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Foreword

HE tremendous research and development effort that went into the

development of radar and related techniques during World War I
resulted not only in hundreds of radar sets for military (and some for
possible peacetime) use but also in a great body of information and new
techniques in the electronics and high-frequency fields. Because this
basic material may be of great value to science and engineering, it seemed
most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the super-
vision of the National Defense Research Committee, undertook the great
task of preparing these volumes. The work described herein, however,
is the collective result of work done at many laboratories, Army, Navy,
university, and industrial, both in this country and in England, Canada,
and other Dominions.

The Radiation Laboratory, once its proposals were approved and
finances provided by the Office of Scientific Research and Development,
chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire
project. An editorial staff was then selected of those best qualified for
this type of task. Finally the authors for the various volumes or chap-
ters or sections were chosen from among those experts who were inti-
mately familiar with the various fields, and who were able and willing
to write the summaries of them. This entire staff agreed to remain at
work at MIT for six months or more after the work of the Radiation
Laboratory was complete. These volumes stand as a monument to this
group.

These volumes serve as a memorial to the unnamed hundreds and
thousands of other scientists, engineers, and others who actually carried
on the research, development, and engineering work the results of which
are herein described. There were 80 many involved in this work and they
worked 8o closely together even though often in widely separated labora-
tories that it is impossible to name or even to know those who contributed
to a particular idea or development. Only certain ones who wrote
reports or articles have even been mentioned. But to all those who
contributed in any way to this great cooperative development enterprise,
both in this country and in England, these volumes are dedicted.

L. A. DuBripGE.
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Preface

HEN the plan for this book was made the authors hoped that it

would be possible to present a more or less complete account of the
experiments and the theoretical ideas pertaining to the problem of the
detectability of a signal in noise. However, because it became clear that
the literature on the subject was so large and that we had no convenient
access to the results of a great deal of work in progress at other institu-
tions, it soon appeared that we would be unable to realize our original
plan of giving a critical account of the whole subject. Accordingly we
decided to limit ourselves to describing as completely as possible the
work done at the Radiation Laboratory during the war, with sufficient
introductory material to make the account intelligible. The authors
regret that this decision has necessitated the omission of many interesting
investigations and calculations.

Another aim of the authors was always to confront the theoretical
ideas with the experimental investigations and in this way achieve some
kind of unification of theory and experiment, which the authors felt was
so often lacking in the existing literature. We feel that we have done so
with some success, particularly in Chaps. 8 and 10, though elsewhere we
may have fallen short of this aim.

This book is the result of the cooperative effort of many people. On
the experimental side many of the investigations were performed by
R. Meijer, S. G. Sydoriak, V. Josephson, and especially by R. H. Ashby,
L. B. Linford, and A. M. Stone. The latter two have also helped con-
siderably with the editing of the material in this book. On the theoretical
side the authors wish to acknowledge the help given by H. Goldstein, A.
J. F. Siegert, and Ming Chen Wang. The first two were responsible for
most of the work described in Chap. 6 and helped with the writing of that
chapter. The theory of the ideal observer described in Chap. 7 was
initiated by Dr. Siegert. The authors are especially grateful to Dr.
Ming Chen Wang who performed the work described in Chap. 13 and
who also helped with the calculations and the writing of nearly all the
other theoretical chapters.

Cambridge, Mass. James L. Lawson
November, 1949 George E. UHLENBECK
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CHAPTER 1
INTRODUCTION

The fundamental process in the reception of electromagnetic signals
is to make perceptible to the human observer certain features of the
incoming electromagnetic radiation. Since perception is the acquisition
of information, these features may be called ‘‘intelligence”’ or *informa-
tion.” The electromagnetic wave may contain this information in many
ways; the particular method used to abstract it and make it perceptible
depends upon the structure of the original radiation.

Antenna‘t_._‘ Receiver Indicator ] Human
observer

F1a. 1-1,—The receiving system.

A book of this length does not permit adequate discussion of all types
of radiation. It is hoped, however, that most of the common types now
widely used—oprincipally in the fields of radio, television, communications,
and radar—and the process of reception applicable to each can be
presented.

To change the characteristics of the signal into a form suitable for
human perception, several events must usually take place. The complete
system in which this train of events occurs can be conveniently referred
to as the receiving system and can be subdivided into four fundamental
functional parts as shown in Fig. 1-1.

The Antenna.—The function of the antenna is to convert the electro-
magnetic energy falling upon it to electric voltages or currents, which
appear on the input terminals of the receiver. In some cases it is desir-
able to consider the antenna as a part of the receiver, since some of the
receiver properties are determined by certain properties of the antenna
(radiation resistance, etc.).

The Recetver.—The function of the receiver is to select the incoming
signal €nd to change its electrical form in such a way that the output of
the receiver contains only the desired parts of the signal. In general,
these parts are only those frequencies suitable for human perception.
The frequencies perceptible to the ear have become known as audio
frequencies, and those visually perceptible as video frequencies. Perhaps
20 kc/sec represents the upper limit of audio frequencies, but video
frequencies may be as high as 10 or even 100 Mc/sec, depending upon the

indicator.
1




2 INTRODUCTION

In addition to frequency selection and frequency changing, the
receiver must also provide amplification. The incoming radiation is
ordinarily feeble and must be greatly amplified in order to actuate the
indicator. The total required power amplification in the receiver may for
some applications be as high as 10'5. Noise and interference limitations
prevent its being made as high as one pleases.

The main purpose of this book is to discuss these fundamental
limitations and to determine the effect of the various parameters in the
receiving system on the detectability of signals.

The incoming signal may be of several types. It therefore follows
that the characteristics of the receiver itself must be specialized and are
determined by the type of information required from the incoming signal.
Because of the general complexity of receivers, furthermore, there are
usually several types which perform essentially the same function but
which may differ in their limitations. The various receiver types are
most conveniently discussed in conjunction with the kinds of signal for
which they are designed.

The Indicator—The output of the receiver consists of voltages or
currents containing those desired frequencies in the signal that are suitable
for human perception. The function of the indicator is to convert these
voltages or currents into audio sound waves or perhaps light patterns
that the human observer can perceive. Common forms of indicators are
the loudspeaker for radio reception and the cathode-ray oscilloscope for
the reception of video signals. There are obviously many ways in which
this indication can be presented to the observer. Several alternative
methods of indication are mentioned in Sec. 2:6.

The Human Observer.—Human perception of certain signal properties
depends not only on what is presented to the observer on the indicator
but also on what use he makes of that information. Perception sensitiv-
ity will therefore depend on characteristics of the human observer that
are not always flexible. The ear, eye, and brain are subject to certain
limitations that in many cases restrict the assimilation of useful informa-
tion. The signal information may, for example, be spread out over a
time so long that the human observer cannot integrate the information.
His memory is limited; hence he can effectively use information only
within a limited time. The human observer must therefore be considered
as part of the receiving system. It is even sometimes convenient to
express human limitations in terms of certain indicator or receiver param-
eters. In the example just mentioned the human memory time can be
related to an equivalent time constant or bandwidth in the receiver.
Similarly, properties of the ear, such as its bandwidth or frequency
sensitivity, will be similar to the electrical properties of equivalent filters
in the receiver.




CHAPTER 2

TYPES OF SIGNALS AND METHODS FOR THEIR RECEPTION

CONTINUOUS-WAVE SIGNALS

2-1. Unmodulated Continuous-wave Signal.—The simplest form of
signal is the so-called unmodulated continuous wave. This is the name
given an electromagnetic wave in which the magnitude of the alternating
electric field strength is constant in time; for example,

= &¢cos 2r(fot + ao). 1

Both &, and the frequency fo, are constant. The constant «p defines the
zero of the time scale, so that

& = & cos 2rap at time ¢t = 0.

The characteristics of a c-w signal are therefore constant amplitude, con-
stant frequency, and particular phase at ¢ = 0. These conditions cannot
be met by any known electromagnetic radiation, since in such a case &,
must have existed throughout all time. Likewise, if &, is not constant,
there will be more than a single frequency associated with the wave.
This will be shown in Sec. 2-2. Therefore there is no such thing as a
monochromatic c-w signal. If & is only slowly varying with time, how-
ever, § will be very nearly monochromatic in frequency. It is convenient
to refer to &, as the signal-carrier amplitude. The carrier frequency is
essentially monochromatic or, more specifically, will contain a frequency
band small with respect to the lowest desired audio or video frequency.

The information that can be abstracted from this c-w carrier is very
meager. One can only inquire, does the carrier exist or not? And to
obtain the answer even to this question may take a long time. To
improve the rate at which information can be transmitted, some param-
eter of the original c-w signal is varied with time or modulated. In the
usual modulation of a c-w carrier, either a variation of the amplitude
(amplitude modulation), a variation of the frequency (frequency modula-
tion), or a variation of the phase of fo (phase modulation) may be made.
These will be discussed in the next section. The modulating frequencies
are, for convenience, those which ultimately become the indicator fre-
quencies, that is, audio or video frequencies, since the human observer
most easily abstracts information from them.

The modulating function may be represented by F(f). For audio

3




4 TYPES OF SIGNALS AND THEIR RECEPTION [SEC. 2:1

modulations one wishes to make F(¢) correspond to the instantaneous
pressure of the modulating sound wave. Since this pressure is normally
1 atm in the absence of sound, it is necessary that F(¢) be a constant
different from zero in the absence of modulation. The sound pressure
may vary upward or downward with audio modulation. For a single
audio tone, therefore, F(t) may be represented by

1 + € cos 2r(pt + B),

where ¢ < 1.
For a complex audio sound, F(f) may be represented by

14 E €n CO8 27 (Dat + Ba),

where the values of the ¢’s are such that F(t) never becomes negative.
If the original sound wave is feeble, the fluctuating part of F(f) may be
amplified but must not be made so great that F(tf) becomes negative.l
This amplification is always desirable in practice, since one wishes to
make the part of F(¢) that contains the intelligence as large as possible
with respect to the constant part or carrier that contains essentially no
information. For a single audio tone where

F(t) =1+ ecos2r(pt + B), 2

it is convenient to refer to e as the fractional modulation or to 100¢ as the
modulalion percentage.

If the modulating wave is to represent some other desired character-
istic, such as light intensity for television transmission, a constant carrier
amplitude may not be necessary. Unlike the sound-wave case, where
within the wave itself the pressure can be less than that with no sound,
the light intensities reproduced by currents in a photoelactric cell are
never less than those produced with no light. In other words, it is never
necessary to modulate downward from the zero intensity case. Thus
F(t) can represent directly the light-intensity values when the photo-
electric cell is scanned over the televised scene. A carrier is no longer
required to ensure that the complete modulating function be positive.
In this case the terms “fractional modulation” and ‘“modulation per-
centage” are meaningless. The funection F(f) can be made as large as
one pleases by amplification, until the peak values exceed that which
can be supplied in transmission.

1 This restriction is necessary because, as will be shown later in the text, devices
designed for reproducing F(2) actually give the absolute value of F (1); therefore, in order
to reproduce F(t) without distortion, its sign must never reverse.




8kc. 2-2] AMPLITUDE MODULATION 5

2.2. Amplitude Modulation.—The incoming wave may be represented
by the equation
& = &F () cos 2w (fot + o), 3)

where the carrier field strength & and the frequency fo are constants.
The function F(¢) represents the modulating function, and a, is a phase
constant. The amplitude of the r-f wave is observed to be modulated
. by F(t). In general, & contains none of the frequencies in F(t) but con-
sists of a band of frequencies in the neighborhood of fo. This band of

Amplitude
Amplitude

L
Frequency f h F=

(@) Modulating function (b) Radio-frequency spectrum
Fiag. 2-1,—8Sidebands produced by amplitude modulation.

frequencies will be spread over a frequency range just twice as large as
the modulating frequencies in F(t). This can be easily shown in the
following way. Let

F@) = [1 + 2 €n €08 2m(pat + Bn)]; 4

then
& =28 [1 + 2 €n COS 2m(pat + Bn) cos 2x(fof + ao)], 5)

n

and

o
& = & cos 2r(fol + o) + —2—" Z €n €08 21 [(fof + Pa)t + a0 + Bal

+%’ en €08 2n[(fot — Pa)t + @0 — Bal.  (6)

n

e

The carrier term, it should be noted, remains unchanged at frequency f,
and amplitude &, There are no terms at the modulating frequencies
Zps, but for each modulating frequency p. there are two terms in e
whose frequencies are (fo + p.), respectively. These are commonly
referred to as sidebands about the carrier of frequency f,. The ampli-
tude of each sideband is $8c€n.

This condition is illustrated in Fig. 2-1, where a modulating function
containing two frequencies is assumed. The sideband spectrum is similar
to the spectrum of F(¢). For a single tone of 100 per cent modulation

i the sideband amplitude is §8,. The two sidebands for a single tone,

;



6 TYPES OF SIGNALS AND THEIR RECEPTION [Sec. 2-2

therefore, for any fractional modulation e contain a total power equal to
€2/2 times the carrier power.

A common example of the a-m wave is that used in ordinary broadcast
radio transmission. In this case F(t) is simply the audio or speech wave.
The input to the receiver from the antenna is essentially an electric
voltage &a that is linearly proportional to the radio-wave field strength &.
The function of the receiver is to reproduce the modulating audio function
F(t) from the input voltage &.. The reproduction can be accomplished

\ Radio-frequency | - Audio or
G amplifier || Detector = ideo amplifier |~ Cout

Fi1c. 2-2.—Elements of a single-detection receiver.

in a variety of ways. Three general types of receivers are used for this
purpose.

Single-detection Recetver.—In this type the frequency changing is
accomplished by means of a detector. The essential parts of the receiver
are shown in Fig. 2-2.

The r-f amplifier is used to provide sufficient r-f signal to the detector
for the latter to operate properly. The purpose of the detector is to
reproduce the audio—modulation function. It will, in general, provide
other frequencies that are not wanted. The purpose of the audio or

Il VY

(a) Carrier (b) Modulated r-f wave {¢) Modulating function
Fi1g. 2-3.—Amplitude-modulated wave.

video amplifier is to reject all unwanted frequencies and to amplify the
desired frequencies until they are of sufficient size to actuate the indicator.

A detector must be a nonlinear device; but as will be shown, nonlinear-
ity is not a sufficient condition for detection. A representation of the
a~-m r-f wave is shown in Fig, 2-3, where for simplicity the modulating
function F(¢) is assumed to be composed of a carrier plus a single a-f tone.

It has been shown that the analysis of an r-f wave of this type contains
only three frequencies: the carrier radio frequency and two sidebands
separated from the carrier frequency by the modulating frequency. It
does not, in general, contain the modulating frequency itself; this can be
seen by noticing that the average value of the wave, averaged over times
corresponding to the modulating function, is essentially zero. If, how-
ever, the negative r-f voltages are suppressed without altering the positive
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voltages, then the average value of the wave will vary according to the
modulating function, and detection will occur. Detection will therefore
result from a nonlinear device that amplifies negative voltages differently
from positive voltages. If the input and output voltages of this non-
linear device are represented by the general power series

o = z e %)

n

detection takes place only because of the presence of the even terms;
thatis, n = 2,4, - - - . The odd terms do not contribute to detection,
since for these terms negative or positive input voltages produce negative
or positive output voltages, respectively. Thus a pure cubic-law
nonlinear device will not be a detector.

_ Perhaps the simplest detector is the so-called square-law device in
which the output voltage is proportional to the square of the input
voltage;

Eour = gEL. (8

As shown previously, & and F(f) may be generally represented by the
equations

&a = &F () cos 2n(fot + av), 9
F(t) = [1 + 2 € €08 2m(pat + B..)], (10)
so that "
8o = GEIF(L) cos? 2x(fot + o), (11)
or

w = g&% [1 + Z €x €08 2r(pat + Br)

n

]2 [1 + cos 412'(fot + ""’)], (12)

from which

St = 983 [l + 2 z €n COS 2T(pnt + ﬂu)

+ z z €n€; €08 21 (ot + B.) cos 2x(pit + /3;)]
n i

[1 + cos 4;(fot + ao)]_ (13)

The frequencies present in Ee. are, therefore, zero (d-c term), pa, 2p.,
Pt Py, Pa— Dy 200, 2ot pa 200 % 2pa, 206k (pa+p), and
2fo £ (p» — p). The only terms of interest are the p, terms and,
incidentally, the terms 2p., p» + pi, and p. — p.. These four general
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terms (apart from the d-c term) are the only ones that will fall in the pass
band of the audio or video amplifier. They have amplitude functions at
the output of the square-law detector given by g&2e,, g62(e/4), g€i(ener/4),
and g&%(ener/4), respectively. Of these four terms the first is the desired
one, the second represents second harmonic distortion, and the third and
fourth represent cross-modulation products. In general, detection
produces cross-modulation terms and harmonic distortion, but it will be
noticed in the preceding example that the amplitudes of these undesired
terms relative to the desired one are usually quite small. If the coeffi-
cients are small (small modulation percentage), these terms may be
neglected in comparison with the desired p, terms.

In principle the a~-m wave can be detected without producing dis-
tortions in the modulating function even when the fractional modulation
is high. This is accomplished by means of the so-called linear detector,
which passes or amplifies all voltages of one polarity linearly but shows no
output at all for input voltages of the opposite polarity. The average
output voltage is therefore linearly proportional to the envelope of the
r-f wave, which, of course, is related to the modulating function F()
itself. The envelope of the modulated wave is not strictly F(f) but
represents F(¢) only if a sufficient carrier exists to ensure that F(f) is
always a positive funetion. The envelope, in general, represents the
absolute value of F(t). The significance of this will be brought out more
clearly in later chapters, but this fact ultimately leads to possibilities of
cross modulation even with the envelope detector.

Even though this linear, or envelope, detector reproduces F(t) prop-
erly, its characteristic curve is extremely nonlinear at zero voltage. At
this point the curvature is infinite. Practical detectors are limited in
this curvature; therefore the region of small voltages is not similar to that
of an ideal linear detector. For this reason practical linear detectors
always operate at high voltage levels and must therefore be preceded by
considerable r-f amplification. Examples of such detectors are diode
detectors, infinite-impedance triodes, and high-level anode-bend detectors.

Because of limited curvature in characteristics, low-level detectors
are almost invariably square law; examples are crystal detectors, low-
level diodes, etc. If desired, high-level detectors can be made square
law, but ordinarily linear detectors are preferred.

Few receivers in common use are of the simple type shown in Fig. 2-3.
The difficulties with the single-detection receiver are usually associated
with the r-f amplification. The r-f amplifier must generally be tuned
to the desired r-f signal and have considerable over-all gain. It is usually
difficult to construct a tuned r-f amplifier of several stages with proper
stability, selectivity, and tuning range. In widespread use is a type of
receiver, the superheterodyne, that overcomes these difficulties.
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Superheterodyne Receiver—The essential elements of a superhetero-
dyne receiver are shown in Fig. 2:4. The r-f signal is fed through an r-f
amplifier, whose function will be shortly discussed, to a mizer, converter,
or “first detector” as it is sometimes called. Into this mixer is also
injected the unmodulated output of a local r-f oscillator, whose amplitude
at the mixer is made very large compared with that of the incoming r-f
signal. The mixer is a detector of one of the two varieties just described,
in whose output will be found many frequencies. Besides the incoming

R-f Mixer or I-f Video or
& amplifier - 1st detector > amplifier [>{2nd detector > audio > Ecut

13

Local
oscillator

Fia. 2-4.—Elements of a superheterodyne receiver.

frequencies fo, the modulation sidebands, and the local-oscillator frequency
w, harmonics of these frequencies will be found and, most important,
cross terms between the signal frequencies and w. Either the fre-
quency fo + @ or |fo — w| can be set to a particular value by tuning the
local-oscillator frequency w. Thus any incoming r-f signal with its modu-
lation sidebands can be converted to a particular iniermediate frequency
with similar modulation sidebands. This i-f signal is then amplified as
shown in Fig. 2-4 to a suitable level for proper detection; then the audio
or video frequencies are extracted as in the case of the simpler receiver
of Fig. 2-3.

Because the amplitude of the local oscillations is large compared with
the signal oscillations at the mixer, the amplitude conversion from radio
frequencies to intermediate frequencies is essentially linear. The signal
oscillations may be regarded as small perturbations on the strong local
oscillations. Modulation sidebands are thus exactly the same at the
intermediate frequency as they are at the radio frequency, since the sys-
tem is essentislly linear. Furthermore, the so-called conversion efficiency
of the mixer from radio frequency to intermediate frequency can be very
good because of the strong local oscillator. A detailed discussion of the
superheterodyne converter appears in the literature.!

For a given local-oscillator frequency w, there are two possible radio
frequencies that will combine with o to form the intermediate frequency.
To suppress one of these possible r-f channels, it is customary to place in
front of the mixer a simple r-f amplifier tuned to the desired radio fre-

1 8ee, for example, K. R. Sturley, Radio Receiver Design, Part 1, Chap. 5, Chap-
man & Hall, London, 1943.
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quency (see Fig. 2-4). This process is called radio-frequency preselection.
For some applications, however, this precaution is not essential.

The principal advantages of a superheterodyne receiver over the
simple type shown in Fig. 2-3 are the following:

1. Since most of the gain may be situated in the fixed i-f amplifier,
the selectivity and gain of the receiver are essentially independent
of the radio frequency.

2. The tuning control (essentially by the local-oscillator frequency)
is much simpler than for a gang-tuned series of r-f amplifiers.

3. For the reception of very-high-frequency waves, high receiver
gain is much easier to obtain at the relatively low intermediate
frequency.

It is possible to extend the treatment to receiver systems that contain
several mixers. Each process of heterodyne detection or conversion, that
is, one involving the mixing of r-f signal with a local oscillator, will yield
a new i-f signal whose amplitude function is linearly proportional to the
amplitude function of the original r-f signal. Many superheterodyne
receivers have been built involving two heterodyne detectors. The r-f
signal is first converted by means of the first local oscillator to a relatively
high first intermediate frequency, which is later converted to a second
lower intermediate frequency by a second fixed-tuned logal oscillator
before final detection takes place. The advantages claimed for the
double-superheterodyne receiver are twofold. (1) The first intermediate
frequency can be made high with the result that the r-f preselection (pre-
ceding the first mixing) becomes much more effective. (2) The high
over-all gain in the receiver can be divided between the two intermediate
frequencies; hence at no time is it necessary to construct an amplifier at
one frequency of extreme over-all gain. This process minimizes the
danger of feedback and instability in the amplifier. The principal dis-
advantage of the double-heterodyne receiver is, of course, its relative
complexity.

No matter how many heterodyne detectors are used in a receiver,
however, the over-all conversion from r-f voltage to final i-f voltage is
linear; if the pass band of the receiver is great enough, the signal amplifica-
tion will be independent of the modulating frequency. In other words,
if the original r-f signal voltage at the input of the receiver is represented
by

&n = EoF (1) cos 2n(fot + o), (14)

where, as before, F(t) is the modulating function and f, is the radio fre-
quency, the voltage in the last i-f amplifier will be given by the expression

Gigx 80;_;F(t) Ccos 21l'(hot + 7), (15)
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where ho is the last intermediate frequency and v is a phase constant
determined by o and the phases of the local oscillators. Because of this
completely linear relationship, all problems encountered in a superheterc-
dyne receiver can usually be treated in terms of the i-f amplifier and some
simple conversion quantity representative of the mixer itself. For
example, in problems of noise this quantity, as will be shown in Chap. 5,
has to do essentially with the conversion

efficiency of the mixer and the noise fig- R-f R-f Audio
ure of the i-f amplifier. input_"‘ oscillator —*output
Superregenerative Recetver.—A super- ¥
regenerative receiver is one in which the Oscillation-
process of great amplification and the control
. . switch
process of detection are accomplished

oy . Fia. 2-5.—Elements of a super-
within one vacuum - tube. The main regenerative receiver. e

purpose, therefore, is to provide a high-

gain sensitive receiver by the use of 2 minimum number of tubes. The
chief drawbacks of such a receiver are (1) the difficulty of making and
maintaining proper adjustment and (2) nonlinear reproduction or
distortion.

The method by which high gain and detection are accomplished is
shown in its essential form in Fig. 2-5. The r-f input is connected to a
tube whose circuits are tuned to the desired signal frequency. An
oscillation control switch is used to put this tube into an oscillating condi-
tion. As soon as this switch makes a connection, the condition for
oscillation is established, but the oscillations themselves are not created.
They begin to build up, however, from the initial voltage found at the
oscillator input (signal voltage in general) and if allowed to proceed would
build up to a steady value determined by the power-output capabilities
of the oscillator tube. If the gain of the oscillator is constant during the
buildup (which implies linear amplification), the oscillation buildup will
follow a rising exponential curve that will eventually flatten off at the
saturation output value.

In the superregenerative receiver, however, the oscillation control
switch is usually turned off before the oscillator reaches a steady value.
The final oscillating voltage at the output of the tube depends, therefore,
on the value of input voltage (signal) and on the length of time the
oscillation control switch is left connected. It is also clear that it depends
upon the regenerative gain of the oscillator tube, that is, the regenerative
feedback.

As soon as the oscillator control switch is turned off, the oscillations
in the r-f input to the oscillator die out exponentially until they reach the
value of voltage supplied by the signal. At this point it is possible to
start the entire operation again. In practice the oscillation control switch
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is turned on and off successively at a high rate called the ‘“quench”
or “interruption” frequency. The control switch is in actual practice a
quench oscillator that controls the feedback in the r-f oscillator. The
quenching rate must be high, since the sampling of the signal voltage
at the start of oscillation buildup must be rapid compared with the
modulation frequency. The input and output voltages in the super-
regenerative r-f oscillator are shown diagrammatically in Fig. 2-6.

Input voltage

: . Output voltage
Fia. 2-6.—Input and output voltages in a superregenerative receiver.

In the preceding description of the superregenerative receiver oscilla-
tor linearity has been assumed, and under these conditions no detection
takes place. If the oscillator tube is operated in a nonlinear region,
however, the average plate current being therefore dependent upon the
oscillation, amplitude detection will occur. The amplification possible
from the single tube can, in principle, be increased without limit, since it
depends only on how far the oscillations are allowed to increase. It
is for this reason, however, that when the tube is operated at high ampli-
fication, the over-all gain is extremely sensitive to the circuit conditions,
such as r-f oscillator feedback or interruption frequency. If these
circuit conditions are held constant, however, the output signal will be
linearly proportional to the input signal. For this reason it is common to
refer to this method of superregenerative operation as the linear mode of
operation. In this case the buildup curve is a pure exponential. In
general, however, linearity is not obtained, since the r-f feedback usually
varies during the buildup process.

The r-f oscillator may be operated in a slightly different fashion to
alleviate the critical gain adjustment. This is done by quenching the
oscillator afier it has reached a saturated value. The time necessary to
reach saturation clearly depends on signal size, hence the output voltage
will still contain signal intelligence. The operation is illustrated in Fig.
2-7. Operation of the tube in a nonlinear region will result in detection,
yielding currents containing signal intelligence. The properties of this
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method of superregenerative operation and those of the previously
described method are somewhat different, particularly with regard to the
question of nonlinearity. In the type shown in Fig. 2'6 the output
voltage increases essentially linearly with input signal, whereas in the type
shown in Fig. 2-7 the output voltage is essentially proportional to the
logarithm of the input voltage.

it

Input voltage

Qutput voltage
F10. 2:7.—Input and output voltages of a superregenerative receiver.

2-3. Frequency-modulated C-w Signals.—In the transmission of
an f-m r-f signal the amplitude of the r-f signal is held constant, the radio
frequency itself being varied in accordance with some desired modulating
function F(t). Such a signal may be represented by

= & cos 2 / 1L+ PO de. (16)
to

There are two important parameters of frequency modulation,
namely, the frequencies contained in F(¢) itself and the total frequency
excursion or deviation, fuss — fmin.

It should be noted that if F(f) = 0, the wave is represented by

& = 8 cos 2r(fot + ao) (17

a8 before, but this is a correct representation only when the frequency is
constant. In general, the phase angle of & will be proportional to the
time integral of the frequency, whether or not the frequency itself is
constant. The unit constant put under the integral with F(¢f) plays the
same role as that of the carrier with amplitude modulation; that is, it
permits ‘“‘downward’” as well as ‘““upward” modulation. It is still
necessary to make the quantity 1 4 F(f) positive at all times. For
interference-suppression purposes the frequency excursion, as will be
shown in Chap. 13, should be large. The excursion must be small,
however, compared with the center frequency fo, so that several channels
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may be available. For these reasons f, is usually made as high as is
practicable.

As in the case of amplitude modulation, a modulating frequency p in
F(¢t) produces a carrier and sidebands. The relative numbers and ampli-
tudes of these sidebands are, however, quite different. A single modulat-
ing frequency p actually produces an infinite number of sidebands whose
frequency spacing is p and whose amplitudes are governed by the fre-
quency excursion and by p itself. These amplitudes are given by Bessel
functions J, of ascending order. If the instantaneous frequency of the
modulated wave is represented by

So(1 + & cos 2rpt),

the phase angle of € at any time { may be written as

2r / fo(1 + k cos 2mpt) dt = 2mfol + 22 f“ sin 2rpt,

plus a constant determined by the angle at time ¢ = 0. Thus

& = &g cos (21rfot + %{—" sin 2xpt + ao), (18)

which may be written in the form!

{Jo ( f °) c08 2nfl

+ 7 ’”p ) [cos 2 (fo + p) — cos 2x(fo — P)]

kf
( °) [cos 2x(fo + 2p) — cos 2x(fo — 2p)]
(k
+ - } (19)
The factor kfy/p is often called the modulation index and represents the
ratio of frequency excursion or deviation (from the carrier frequency fo)
to the modulating frequency. In f-m radio practice the modulation
index is usually higher than 10.
Equation (19) shows that for each modulating frequency p an infinite
number of sidebands exist, separated from the carrier frequency fo by

1 See, for example, B. van der Pol, ‘“‘Frequency Modulation,” Proc. IRE, 18, 1194,
July, 1930.

°) [cos 2x(fo + 3p) — cos 2r(fo — 3p)]

-elg'e

) [cos 2x(fo + 4p) — cos 2x(fo — 4p)]
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harmonics of p. For a large index of modulation the important sidebands
are those lying within the frequency excursion interval; the Bessel func~
tions of order higher than the argument (modulation index) approach
zero rapidly as the order becomes high. On the other hand, for a low
index of madulation few sidebands have an appreciable amplitude; the
first (J, term) is, apart from the carrier (J, term), the only one of appreci-
able amplitude. These qualitative effects are illustrated in Fig. 28,

fo %
kfo kfo kfo

= 0.5 — =2 — =24
» v

(@) Amplitude spectra for f-m waves. The vertical lines represent the relative ampli-
tudes of the carrier and sideband components.

(b) Frequency-modulated wave,
F1e. 2-8.—Frequency modulation; typical waveform and spectra.

which shows amplitude spectra for three typical cases. In addition to
the effects just mentioned it can be seen that for large index of modula~-
tion, the density of sidebands is nearly uniform within the excursion
interval. Furthermore the carrier, which varies with Jo(kfo/p), can
vanish for certain values of the modulation index; this situation is quite
different from the a-m case. In Fig. 2-8 the sideband amplitudes are all
shown with positive coefficients; the diagrams indicate therefore the abso-
lute values of sideband amplitudes. This is, of course, the quantity that
would be measured by a linear receiver of bandwidth sufficiently narrow
to contain only one sideband.

The function of the receiver is to convert the f-m signal into an a-m
signal, where it may be converted in the usual manner to an audio or
video signal. In addition to the frequency-to-amplitude converter there
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is an amplitude limiter that removes amplitude fading from the incoming
signal; it is also helpful in reducing certain kinds of external interference
such as ignition or spark-generated interference.

The frequency-to-amplitude converter ordinarily consists of a dis-
criminator circuit whose output voltage changes linearly not only with
the amplitude of the incoming signal but also with its frequency. Since
amplitude variations, which may occur in the incoming signal because of
fading, are essentially removed by the initial amplitude limiter, the only

. Frequency-to- Amplitude
&~ Ar|r_1p|_|tude amplitude |>— modulation g,
imiter converter receiver

Fie. 2:9.—Frequency-modulation receiver.

Input voltage as a function of time
[ 5 L V1V £ U o W A Y A WA V1 V1 O O W W a1 U W W

Voltage after amplitude limiter

Voltage after frequency-to-amplitude filter, as a function of time
Fig. 2:10.—Voltage waveforms in f-m receiver.

thing that can produce amplitude variation of the output signal is the
frequency variation of the incoming wave. Once the a-m wave is pro-
duced, it is rectified or detected in the usual fashion. A block diagram of
an f-m receiver is shown in Fig. 2-9. Typical voltage waveforms occur-
ring at various places in the receiver are shown in Fig. 2-10. It will be
noticed that incidental signal fading in amplitude is virtually eliminated.
Production of the a-m wave will of course involve changes in radio fre-
quency that will occupy a large frequency band. The a-m receiver must
therefore be able to amplify this large band of frequencies before detection
takes place; otherwise distortion will occur. The linearity of over-all
response is governed almost completely by the linearity of the frequency-
to-amplitude converter. This converter, or slope filter as it is sometimes
called, can be made very nearly linear.

An ideal f-m receiver is therefore essentially insensitive to an incoming
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a-m signal. Likewise an a-m receiver is insensitive to an f-m wave, except
where the bandwidth of the a-m receiver is smaller than the frequency
excursion of the f-m signal. In this case, because of the slope of the
response curve, the frequency function is converted to an amplitude
function, usually in a nonlinear fashion, and the receiver will not be
insensitive to the f-m signal.

2.4. Phase-modulated C-w Signals.—Phase modulation is in one
sense merely a type of frequency modulation. The total phase angle of
&€ is made to vary in accordance with the modulating wave F(f). A p-m
wave can therefore be represented by

& = 8 cos 2rlfot + ao + mF ()], (20)

where m is a constant representing the change in phase angle accompany-
ing a unit change in F(t). If F(¢) is expressible in a Fourier series,

F(it) = z @y COS 2mPal, 21

n

comparable p-m and f-m representations can be written

& = & cos [2r(fot + a) +m z a, CoS 27rp,.tJ,

phase modulation; (22)
&o cOS [21r(fot + Bo) + kfo z ;—lf sin 21rp,.t],

o™
I

frequency modulation. (23)

These expressions are similar, but they differ in one important respect.
The coeflicients of the p. terms are independent of p. for phase modula-
tion but are inversely proportional to p, for frequency modulation.
Phase modulation may therefore be converted to frequency modulation
by placing in the modulator a filter whose gain is inversely proportional
to frequency. Similarly, frequency modulation may be converted to
phase modulation by placing in its modulator a filter whose gain is pro-
portional to the modulating frequency. Thus the essential difference
between frequency and phase modulation lies in the characteristic of the fil-
terin the modulator. The relative advantage of one system over the other
depends on the modulating function #(¢) and on the frequency spectrum
of undesired interference. In actual practice it is customary to use
neither pure phase modulation nor pure frequency modulation. The
lower audio frequencies are usually frequency modulated, and the higher
frequencies are phase modulated. Appropriate.filters in the receiver
straighten out the frequency characteristic.
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PULSED SIGNALS

2-5. Infinite Pulse Trains,—Systems have been developed in which
the reception of a series or train of r-f pulses is of primary interest. The
fields of radar and pulsed communication utilize such pulse trains. In
principle the pulsed function could be amplitude, frequency, or phase,
and methods for reception would follow lines suggested in the preceding
sections. Because of the great use made of amplitude pulsing, however,
and the insignificant use made at present of frequency or phase pulsing,

5
W gk
Frequency —m
(¢) Amplitude spectrum (b) Power spectrum
Fia. 2-11.—Frequency spectrum of infinite pulse train.

this book will treat only the case of amplitude pulsing. The phase rela-
tions of the amplitude pulses may be important, of course, and this rela-
tionship will be considered where necessary, but the essential feature is
one of amplitude pulsing.

The amplitude pulses, it is assumed, are repeated at a rate denoted
here by the pulse repetition frequency, or PRF. If the pulse train is
infinite in extent, the frequency spectrum can be computed by conven-
tional methods in Fourier analysis. Denote the pulse train by F(¢); then

F(t) = sin 2rfot > Ax(D), (24)

k7 k7

=0 otherv;rise.

where

In this expression, f, denotes the PRF, and r the pulse length. A Fourier
development of Eq. (24) shows that

F(t) = sin 2xfot (f,‘r + % Z _sx_n%-n__,‘l_' cos anf,t) (25)
n=1
or
Fo = ) Gt Si“;:f T (sin 2x(fo -+ nf.)t + sin 26 (fo — nf)), (26

n=0
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where the symbol 8., is equal to unity when n = 0; otherwise it equals
Zero.

This equation is illustrated in Fig. 2-11 for a situation in which f, > f..
It can be seen that apart from the carrier frequency fo, there are a host
of sideband frequencies separated from f, by multiples of f,; these are
the only frequencies present and have amplitudes determined by Eq. (26).1

A good deal of information is contained in such a train of pulses. The
PRF, phase of pulses, etc., could be ascertained if required. If the
quantity to be determined is merely the existence of the pulse train, how-
ever, a complete analogy can be drawn to the c-w case of Sec. 2:1. The
amplitude pulse train is a kind of carrier, which in itself contains little
information. It may, however, be modulated to increase the information
that can be transmitted and, as in previous cases, may be modulated in
amplitude, radio frequency, or phase. In addition, it is possible to modu-
late it by varying the PRF or by varying the pulse length or width.
These methods of modulation as well as methods for detection will be
discussed in later sections.

2.6. Finite Pulse Trains.—In radar applications a transmitter is made
to send out r-f energy in a succession of pulses. The frequency of the
radio wave itself may be extremely high, and the duration of a single
pulse may be only a few microseconds. Occasionally a system is made
where the pulse duration, or length, is as small as 0.1 usec. The pulses
are repeated at an audio rate, that is, from perhaps 50 to 10,000 pps.
The pulses of r-f energy are sent out into space perhaps omnidirectionally
but more usually concentrated or focused in certain regions by a direc-
tional antenna system. Objects in these regions will reflect. or scatter
the radiation. Some of this scattered energy is picked up by a receiving
system usually located near the transmitter. The receiver must be
capable of passing to the indicator the video pulses, that is, the detected
1-f pulses that correspond to the scattered or reflected pulses of r-f energy.
One of the major difficulties in the radar problem is to make the receiving
system sufficiently sensitive to detect the scattered r-f energy of objects
several miles away. The limitation in sensitivity is generally imposed
by noise of some sort generated within the receiver (see Chap. 5), or
governed by external interference (see Chap. 6).

The fundamental purpose of the radar set is to provide information

! This development requires that the successive pulses have a defined r-f phase, as
though they were determined from a master c-w oscillator of frequency fo. The
subsequent chapters of this book deal only with pulse trains in which the phase from
pulse to pulse may or may not be random; it makes no difference in the reception
process for amplitude pulses, since the output of any detector is insensitive to r-f
phase. The mathematical specification for a train of r-f pulses having random phases
is different from Eq. (24), however; the sine term will contain, in addition, a random
phase angle dependent upon the index k.
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that permits the human observer to locate objects of particular interest.
With a directional antenna system the azimuth and elevation of search
are known; and by the system of pulses, the range of or distance to a
reflecting object can be found. This range is measured by the time differ-
ence between the transmitted pulse and the received echo pulse. Since
the angular location of the reflecting object requires a directional radiator,
a general search of the entire region requires some sort of scanning. The
scanning or searching motion of the antenna system is usually reproduced
in some form within the indicator, so that easy correlation of the presence
of a particular echo with a particular azimuth or elevation can be made by
the observer. Because of the scanning action, the return signal reflected
from an object consists of a finite train of r-f pulses. This train of pulses
is, of course, repeated at the next scan.

The scanning can be accomplished in many ways, and the pulse video
information at the output of the receiver can be presented on the indicator
in many ways. The method of scanning is dictated by both the function
of the radar set and mechanical considerations for moving the antenna
assembly.! The method of indication is usually one that makes the radar
information most intelligible to the observer. Some of the more common
indicators used are listed below for reference.

The Type A or Linear Time-base Oscilloscope.—This indicator? con-
sists of a cathode-ray oscilloscope in which the video signals from the
receiver are impressed upon the vertical deflection plates and a linear saw-
tooth sweep voltage is applied to the horizontal deflection plates. This
horizontal sweep is usually started by the initial impulse from the radar
transmitter and is made to move across the oscilloscope at a rate con-
venient for radar range measurements. The next transmitted impulse
starts the sweep over again. Thus, near-by objects that scatter the r-f
energy will cause a visual vertical deflection, or ““pip”’ (also called
“blip”’), near the starting edge of the sweep; a reflecting object at a
distance will produce a pip at a horizontal position corresponding to the
range of the object. Thus the linear time base provides a range measure-
ment of objects scattering the r-f pulses. The amplitude of the video
deflection, or pip, is a measure of the effective scattering cross section of
the object in question. It is also a function of the range of the object,
because of geometrical factors, and a function of the over-all sensitivity
of the radar set. The type A oscilloscope thus essentially provides
information about the range of an object and some information as to its
“radar” size. It does not give azimuth or elevation information, but
this can always be obtained from separate dials geared to represent the
antenna coordinates. Because of the time necessary for the observer to

: See Radar Scanners and Radomes, Vol. 26, Radiation Laboratory Series.
2 Bee Cathode Ray T'ube Displays, Vol. 22, Radiation Laboratory Series.
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coordinate the A-scope range with elevation and azimuth, the system is
not well suited to rapid scanning or search. It is most useful in the
measurement of radar range on systems that have a broad antenna-
radiation pattern and either do not scan at all or scan relatively slowly.
This type of indication, however, is sensitive in the detection of weak
echoes.

In addition to other obvious advantages, a radar can give far more
precise range information than an optical range finder. The radar range
error can, unlike the optical, be independent of the range itself and can be
made as small as a tenth of the equivalent range represented by the pulse
length. For high precision the sweep on the A-scope would have to be
extremely linear and well calibrated or some other marking device pro-
vided. Tt is customary to provide range marks, or a series of sharp
timing ‘‘pips,”’ to mark the sweep at convenient intervals. If extreme
precision is required, a movable delayed-timing pip is provided whose
time delay is calibrated and accurately known. It may be generated
from a crystal-controlled oscillator. This timing pip can be made to
coincide with the desired radar echo, whose accurate range can thus be
determined. Where the sweep length is very long in comparison with the
pulse length as presented, it is difficult to see the relative positions of the
echo pip and timing pip. For this purpose an especially fast horizontal
sweep may be provided. Such an oscilloscope is known as an R-scope
(range). It is merely an A-scope in which the start of the sweep may be
accurately delayed and the sweep speed made sufficiently great to
delineate the desired echo and timing pip. The R-scope is also useful in
examining the character of the returned echo pulse or pulses and is
generally more sensitive than the A-scope in the detection of extremely
feeble echoes.

The Type B Oscilloscope.—This indicator was initially developed to
add azimuth information to what was presented on the A-scope; this
was done by impressing the video signals from the receiver on the control
grid of the cathode-ray oscilloscope. The video signals therefore modu-
late the beam current in the oscilloscope and consequently the intensity of
light output. Under these conditions the vertical plates of the oscillo-
scope are left free. It is necessary only to impress on these plates a
voltage that corresponds to the azimuth of the radar antenna. As the
antenna is made to scan in azimuth, the trace of the time-base sweep is
made to move up and down in synchronism with the antenna position.
This type B oscilloscope therefore produces on its screen a bright spot
whose position in range and azimuth on the oscilloscope face corresponds
to the actual range and azimuth of a reflecting object. It is therefore a
radar map, differing from the usual map by a distortion caused only by
the particular coordinates chosen. Like the ‘‘deflection-modulated”
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type A oscilloscopes, ‘“intensity-modulated” oscilloscopes such as type B
are very sensitive in the detection of weak echoes; but the intensity-
modulated oscilloscopes are much better adapted for scanning systems.
Because it is convenient to view the oscilloscope face like a map, and
because the radar-scanning frequencies are generally below the flicker
frequency for the human eye, it is customary to use for the screen of the
cathode-ray tube a special material whose light output decays relatively
slowly with time.

The Plan-position Indicator, or PPI.—This is the name given an
intensity-modulated oscilloscope in which the time-base sweep is made to
start at the center of the tube and move radially outward. The azimuth
of this radial sweep on the oscilloscope is made to correspond to the
azimuth of the radar antenna. This type of sweep is usually provided by
a magnetic deflection yoke placed around the neck of the cathode-ray
tube. As the antenna is scanned in azimuth, the magnetic yoke is
synchronously rotated about the axis of the tube. This synchronization
is easily accomplished by driving the yoke by a synchro motor or some
other remote mechanical synchro-transmission device. Thus the PPI
provides a map of all radar echoes, where the map scale factor is merely
the ratio of twice the velocity of the radio wave to the sweep speed.
Because of the ease with which a true map can be interpreted, the PPI
is an ideal indicator for use with radar sets searching continuously in
azimuth. Intensity-modulated range marks are generzlly provided for
calibration purposes. They appear as concentric brightened rings at
regularly snaced radial intervals.

The Range-height, or RH, Indicator—Neither the type B oscilloscope
nor the PPI can present elevation information, and for radar sets whose
function is height-finding some other indicator is desirable. Without
recourse to a three-dimensional intensity-modulated indicator, which
has not yet been devised, the presentation of elevation information
requires the omission of either azimuth or range information. If the
azimuth information is suppressed, an indicator presenting range and
height, or RH oscilloscope, can be provided. The radar antenna is made
to nod or oscillate in elevation angle. The angle of the deflection yoke
in an oscilloscope of the PPI variety is made to follow the antenna eleva-
tion angle in such a way that the indicator presents a true radar map of a
particular vertical section of space. Thus the RH indicator will present
true range and height of radar targets, neglecting, of course, the curvature
of the earth’s surface. The range and height scales can, if necessary,
be expanded or contracted to provide convenient values.

The Type C Indicator—If the range information is suppressed, an
indicator presenting azimuth and elevation information, or type C
indicator, can be provided. Because the range information is suppressed,
the indicator will show a bright spot on its screen at an elevation and
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azimuth where a radar-reflecting object exists at any range. This is the
radar presentation which most closely approximates a visual picture
of the surroundings. It is probably one of the least useful radar pres-
entations, however, since it does not utilize the one parameter, that is,
range, given best by the radar set. There are usually a tremendous
number of radar-reflecting objects at any prescribed azimuth and eleva-
tion, and it is useful to select preferentially particular ones for presenta-
tion of the type C indicator. This selecting is made possible by a variable
range ‘‘gate,”’ or ‘‘strobe,” which sensitizes the indicator only for echoes
occurring within a defined range interval. The gate may be set at any
range, and its length adjusted to correspond to any required range
interval. Gating not only is useful for type C indicators but is often
widely used where the video impulse from a single target is to be selected
and used to control other circuits, perhaps even the coordinates of the
radar antenna itself. The type C indicator is less sensitive to the detec-
tion of weak echoes than the PPI or type A or B oscilloscopes.

Awral Perception.—The presence of the video pulses at the output of
the receiver may be indicated aurally to the human observer., One way
of accomplishing this is to put the video signals into an audio loudspeaker,
then listen for the audio tone produced by the PRF. When this method
of detection is used, all radar range information is lost unless the incoming
signals are gated in order to pass to the loudspeaker only those signals
which occur within a desired range interval. This aural detection of the
PRF component is surprisingly sensitive and very useful in recognizing
signals from a particular radar set, since the PRF’s of various installations
may differ markedly. The ear appears to be very sensitive to changes in
pitch or tone.

Meter Detection.—By still another method of perception, the aural
signals are rectified and impressed on an ordinary d-¢ meter and the
presence of a signal determined by the meter deflection. If this method
is adopted, both radar range information and information about the PRF
are lost but, as in the case of aural detection, the video signals may be
gated. It might be argued that meter and aural detection methods are
equivalent, but this equivalence is not easy to show. The use of the
rectifier or detector in producing the meter deflection gives rise to possible
cross modulation. This will be discussed in Chap. 9.

Types of Recetvers Used.—The function of the radar receiver is to
provide pulsed video signals from the incoming series of r-f pulses. In
principle the three types of receivers mentioned in Sec. 2-2 may be used,
but some remarks on the usefulness of each type can be made. The
simple single-detection receiver is useful principally where the receiver is
to be made sensitive to a large r-f band. In this case no r-f amplification
is used; detection is accomplished at low level and is thus necessarily
square law. Because of the low detection sensitivity of the square-law
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detector, most of the signal energy is lost, the remainder being forced to
compete with noise produced after detection. For this reason this type
of receiver is not so sensitive as the superheterodyne for weak signals,
perhaps by a factor of 10% in power. However, the r-f bandwidth can be
made several hundred megacycles per second in extent.

The superheterodyne receiver is almost universally used in radar appli-
cations, because it has better sensitivity than the single-detection receiver
and better stability than the superregenerative receiver. At the very
high frequencies the r-f amplification, because of its limitations and
difficulties, is not customarily used, but the r-f signal is usually imme-
diately converted into an i-f signal. The i-f amplifier therefore has a
relatively great voltage gain, perhaps as much as 108, weak signals being,
as a result, made suitably large for linear detection or rectification. This
amplification must be of such a nature that it has a satisfactory response
to the desired pulses. From Fig. 2-11 it can be seen that most of the
energy in the pulses is concentrated in a band of frequencies roughly
equal to the reciprocal of the pulse length. Therefore the r-f and i-f
bandwidths must each be of the order of magnitude of the reciprocal of
pulse length. Since the pulse lengths in use vary from 10-7 to 10~° sec,
the bandwidths must be of the order of 10° to 107 cps. This is the chief
difference between receivers made for radar pulses and those made for
radio transmission, the latter being designed to pass only audio frequencies.

Some superregenerative receivers have been constructed for pulse
reception. The quench frequency must be high compared with the recip-
rocal of the pulse length to make sampling sufficiently frequent. For
pulse lengths of less than 1 gsec, this has been found difficult to do.
Furthermore the criticalness of adjustment has greatly restricted the
usefulness of such receivers. Nevertheless, certain of their properties,
such as high gain over satisfactory bandwidths, necessitate taking them
into consideration.

In all these methods of reception the main object of perception is to
become aware of the existence of the incoming r-f signal. The question
is not one involving the detailed analysis of the signal characteristics but
simply whether or not the signal exists. As pointed out in Sec. 2-5, it is
often useful to consider the detection of a series of pulses that are modu-
lated in some manner at a slow rate. The information one wishes to
abstract from this type of signal is the relatively slow modulation function
appearing in the pulse train, in much the same way that one wishes to
abstract the modulating function from an a-m or f-m c-w signal.

2-7. Amplitude-modulated Pulse Trains.—There are two reasons
why it is useful to consider the perception of the modulation function of a
modulated pulse train. First of all, the echoes obtained in radar recep-
tion are indeed modulated by changes in the characteristics of the target
under surveillance, The effective scattering cross section of the target
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may vary with time because of changes in the target aspect or position;
it may also vary in a way characteristic of the particular target itself.
For example, propeller rotation on an aircraft will give rise to a periodic
change in its effective radar scattering cross section. Information con-
cerning the modulation of received pulsed echo trains may therefore be
helpful in deriving information concerning the nature of the target. As
another example, one can see that the phase of the returned radar echo
depends upon the total path length taken up by the radio wave and there-
fore changes markedly with target movement. By a phase-detection
scheme a modulating function that depends on target speed can thus be
derived. The phase changes brought about by target movement can be
conveniently measured by one of two general methods. The coherent-
pulse system mixes the incoming echoes with a strong local e-w generator
whose phase is reset to the phase of the transmitted pulse each time it is
produced. The resulting echo amplitude will be constant from pulse to
pulse unless the target in question moves during this time interval by an
amount that is appreciable with respect to the wavelength of the r-f
signal. As the target moves, the echo will be seen to beat up and down
with a frequency given by the Doppler shift. By analyzing the phase
modulation of the return pulses, therefore, information concerning radial
target speed can be derived.

A second method of phase detection is possible. Instead of utilizing
the local source of phased ¢-w oscillations, the echo from the moving
target is mixed with other strong echoes from fixed targets. Again beats
in the echo amplitude are obtained in the same way as for the coherent-
pulse system. The presence of these beats depends, however, upon the
presence of local fixed echoes at the same range as the target. Since this
condition is not under the observer’s control, the system has a limited
area of usefulness. It is, however, much simpler than the coherent-pulse
gystem.

One of the main uses for modulated pulse trains, however, lies in their
application to specialized communication systems. Such systems have
the advantage of highly directional propagation characteristics and a
high degree of security. In these systems a continuous succession of
pulses modulated at speech frequencies is sent out. As pointed out in
Sec. 2-5, the modulation itself may be applied to the pulses in several dif-
ferent ways. Amplitude modulation will be discussed in this section,
and other types of modulation in Sec. 2-8.

The amplitudes of the continuously recurring pulses are assumed to
vary in accordance with the modulating function. If the modulating
function is one that can take on both positive and negative values with
respect to its normal or quiescent value, there must be provided, as in
previous examples, a carrier term large enough to prevent the entire
amplitude function from reversing sign. The function of the receiver
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is to obtain the modulation function from the relatively complicated
train of incoming pulses. The first step in the chain of events is the
detection of the r-f signal to provide video pulses, just as in the case of
normal radar echo detection. Since distortion of the modulating func-
tion is undesirable, linear detection is greatly preferred; and for the sake
of sensitivity, a superheterodyne receiver should be used. The ampli-
tudes of the video pulses are still slowly modulated by the modulating
function. The possibility of gating the pulses at this point makes this
type of communication system much more secure than the ordinary a-m
c-w signal. The proper video pulses can be selected by a gate whose
PRF is the same as that of the desired signal and whose timing is made
to coincide with the pulses etther by a special timing pulse or by auto-
matic locking voltages derived from the incoming pulses themselves.
The sensitivity of the receiver to weak signals in noise is affected by gating
and by the gate length itself. This point will be discussed in Chap. 10.

The spectrum of the pulses can be derived in a straightforward fashion.
Let us represent the modulating wave F(f) by the function

F{) =1 + esin 2rp(t + 9), (27)
where ¢ is the fractional modulation and p is the modulating frequency.
This function is now to represent the amplitude of the pulse train, which
has a PRF denoted here by f, and pulse lengths indicated by . For the
sake of simplicity it is supposed that the pulse amplitude at the start of
the pulse will assume the value of F(t) and that the pulse amplitude is
maintained constant throughout each pulse. That is, the signal function

will be given by
F.t) — z F (J’;) A, (28)
k

where
k k
A(t) = 1 forﬁ<t<ﬁ+7,
0 otherwise.

The Fourier development of F.(t) becomes

Fyt) =1f, + ¢ 7{—;) sin #rp sin (2rpt — wrp + 27pd)
1\ (2 sinalrf,
+ - 2 [M cos 2ml <f,t - f,%)
=1
+ lf,efii » sin #r(lf, + p) sin [2z(lf, + p)t — wrp -+ 27pd]
+ 7 e]i p sin w7 (If, — p) sin [2x(lf. — p)t + 7rp — 21rp6]}. (29)
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It can be seen that, in general, many frequencies are present in F,(t),
namely, all the harmonics of the PRF f, and cross terms between these
harmonics and the modulating frequency p. The amplitude of any term
of frequency f is modified by the familiar (sin #7f)/rrf because of the
pulse length 7. A convenient chart for reading off all frequencies present
is shown in Fig. 2-12. Output frequencies are given on the abscissa scale
for any input modulating frequency chosen on the ordinate scale. The
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F1a, 2-12.—Output frequencies for a given modulating frequency.

output frequencies present are those which appear at the intersections of
a horizontal line, whose ordinate is the modulating frequency p, with the
array of diagonal lines and vertical lines shown in the diagram. An
example is shown by the dotted line drawn for p = f./4; the output fre-
quencies are shown to be Z If, and Z (If, + f./4).

The diagram shown in Fig. 2-12 is not suitable for indicating the inten-
sities of the various components. A simple rule to remember is to
consider that all intersections with diagonal lines yield amplitudes which
are e times those of the vertical lines. Furthermore, all intersections are
modified according to the individual pulse spectrum (sin 77f)/x7f and
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therefore fall off with increasing frequency. A typical spectrum is shown
in Fig. 2-13, where f;r = 0.2 and p = f,/4 as shown in Fig. 2:12. The
frequencies shown with dotted lines are those caused by the modulation
itgelf.

It would be possible to put the video pulses directly into a loud-
speaker and derive sound that contains the modulating function (see
Fig. 2-13). It would also contain many undesired and extremely annoy-
ing frequencies. These undesired frequencies are all higher than the
modulating frequencies provided p < f./2 and can thus be filtered out
before going into the loudspeaker itself. Generally, the desired audio
component must be greatly amplified because of its small energy content.
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Fia. 2-13.—Video spectrum of modulated pulse train,
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The filtering and audio amplification may be greatly helped by the
so-called ‘‘boxcar’ generator, or demodulator. This device consists of
an electrical circuit that clamps the potential of a storage element, such as
a capacitor, to the video pulse amplitude each time the pulse is received.
At all times between the pulses the storage element maintains the poten-
tial of the preceding pulse and is altered only when a new video pulse is
produced whose amplitude differs from that of the previous one. The
name ‘‘boxcar generator” is derived from the flat steplike segments of the
voltage wave.

The output of the boxcar generator is given by Eq. (29) (by putting
7 = 1/f,) and can also be obtained from Fig. 2-13. It can be seen that
none of the If, terms remain except the d-c term. The output frequency
present at the modulating frequency p is also incidentally much amplified
because of the increased pulse length. The output voltage, however,
still does contain at reduced amplitude the cross-modulation terms.
Nevertheless, the main body of interfering audio frequencies has been
removed, and therefore the problem of additional filtering is greatly
simplified. The boxcar generator can be used only on gated systems,
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unfortunately, or at least on systems from which an accurately timed
clamping pulse is available.

If cross-modulation terms in the output must be avoided, the highest
modulation frequency must be substantially less than one-half of the
PRF f,. If a filter is used to separate the output frequencies, it will have
a cutoff or attenuation curve that is not infinitely sharp; therefore the
maximum value of p must be further restricted. If p is limited to f,/3,
then one octave exists for the filter to achieve its cutoff value. This is
considered to be an acceptable value. It will be noticed that this restric-
tion will apply to all of the pulsed communication schemes, since it follows
directly from the effect of sampling the signal voltage at discrete times.

Before proceeding to other forms of modulation, the part played by
various detection processes should be considered. The first detection
process (actually the so-called ‘““second detection’ in a superheterodyne
receiver) reduces the r-f voltage to a video voltage. This provides a
measure of the intensity of the r-f wave without regard to its exact r-f
structure. This video voltage still varies at a fairly high rate and may
contain modulation intelligence. An additional detection process, that is,
boxears with audio filtering, will bring out the modulation frequencies.
Still another, or fourth, detection can be provided. This one measures
the average intensity of these audio voltages; that is, it measures the
fractional modulation e. Thus the detection process is one that princi-
pally provides a measure of the average intensity of a function. Because
of this averaging process, the frequencies present in successive detections
become progressively lower.

One more point regarding the demodulated signal should be noted.
The video output is a measure of the signal size and can therefore be used
as a signal-actuated control voltage. It is sometimes convenient to use
this voltage to control the gain of the receiver. This control must clearly
be made of such a sign that an increase in video signal will reduce the
receiver gain; otherwise the system will be regenerative. With this
degenerative system, the receiver gain tends to maintain the average
output signal constant in size regardless of input signal size. The action
of this type of automatic gain control, or AGC, will be described in
Chap. 11.

When the AGC does not need to be rapid, an ideal arrangement is to
use the output of the boxcar generator as the feedback control voltage.
This arrangement is shown in block form in Fig. 2-14, where all the parts
are self-explanatory with the exception of the filter between the third
detector and gain-control lead. The function of this filter is essentially
to pass only the d-c component to the gain control lead, thus effectively
removing the desired modulation frequencies. In this fashion these
modulating frequencies themselves are not degenerated in the receiver.
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If the filter passes the modulating frequencies, they will be degenerated
and greatly reduced in amplitude at the receiver output. They are not,
in general, completely degenerated because of the finite change in output
signal required to cause a change in receiver gain. For some applications
this finite degeneration is not serious, since audio amplification will
restore the amplitude of the modulation signal. In addition, because of
the rapid feedback, the speed of AGC is greatly increased. The filter,
however, must considerably attenuate the PRF, or oscillation will
develop because of the cross terms of Fig. 2-12.

. Single .
Receiver r-f and Second Third
E,— i-f amplifier > detector [ se::i;or ™7 detector Eou
Gain-control lead Audio
fow-pass
filter

Fia. 2-14.—Audio-modulation receiver with automatic gain control.

2-8. Other Types of Modulation. Pulse-length or Pulse-width Modula-
tion.—In this case the modulation is accomplished by variations in pulse
length. The PRF and the pulse amplitude are held constant. Recep-
tion consists of detecting the r-f pulses, then converting the length varia-
tions to amplitude variations. As pointed out in Sec. 2-7, the PRF must
be at least three times that of the highest modulating frequency, and a
low-pass filter must be used to exclude undesired cross terms.

The conversion from pulse length to amplitude is most easily accom-
plished by passing the signal through a filter of limited pass band.
Through such a filter, if its bandwidth is considerably less than the recipro-
cal of the maximum pulse length, the output response will have an ampli~
tude proportional to the product of input pulse length and amplitude.
This operation can be accomplished in the r-f and if sections of the
receiver before detection takes place. It is most convenient, however,
to limit the incoming signals (usually done most easily after detection)
before converting the pulses to amplitude-modulated signals. The
limiter plays the same role as the limiter for f-m radio (see Sec. 2:3);
that is, it eliminates amplitude variations in received signals produced
by fading and reduces interference of a type in which peak voltages are
very high. The bandwidth of the receiver in front of the limiter should
be adequate to pass the shortest pulse properly. From Fig. 2-11 it can
be seen that the bandwidth should exceed the reciprocal of the shortest
pulse length.

In addition to peak limiting, it is usually desirable to provide a lower
limit below which no output signal occurs. If the input signals fall below
some defined minimum level, noise or interference in the receiver renders
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them useless. Therefore a lower limit, which excludes this noise, is
beneficial. The presence of both a lower and upper limiter constitutes
a ““slicer,” so named because the output voltage is proportional to the
input voltage only within a narrow voltage range or slice. The sliced
output of the length-modulated pulses will consist of a series of relatively
““clean”’ constant-amplitude length-modulated pulses suitable for imme-
diate conversion to a-m pulses.

As in the case of a-m pulses, gating can be employed within the limits
of pulse lengths used. A gate length as long as the longest pulse must
be used; this would appear to favor slightly the use of a-m pulses where
accurate gating of a size equal to the pulse length at all times is possible.

Frequency or Phase Modulation.—In this type of modulation one can
think first of an ordinary f-m or p-m continuous wave as described in
Secs 2-3 and 2-4. The pulses merely select short segments out of this
r-f wave; they therefore bear defined frequency and/or phase changes
determined by the original modulation. The process of reception con-
sists of limiting the pulses, then passing them through a frequency-to-
amplitude slope filter. From this point they are handled like a-m pulses.
The pulse frequencies spread out over a band about equal in width to the
reciprocal of the pulse length. Therefore the frequency deviation should
be made large compared with this band of frequencies. In the true
pulsed case, it is not really essential that the phase of the r-f signal which
is being frequency modulated be accurately defined at the start of each
pulse, since the frequency-to-amplitude converter is itself insensitive to
phase. Unlike the case of f-m continuous waves, the starting phase of
each pulse may be made random because of the dead time between pulses;
no difficulties are caused thereby with f-m pulses, but phase-modulation
schemes are, of course, upset. Likewise schemes can be considered in
which the phase is modulated without changing the center frequency
during each pulse. Such modulation is again made possible by the dis-
continuity between pulses; either frequency or phase can be arbitrarily
set. For the detection of the phase modulation, a scheme similar to that
discussed in Sec. 2'6 can be used. One may use a coherent local c-w
source whose frequency is that of the pulses and whose phase is in quad-
rature with the pulse phase in the absence of a modulating signal, that is,
carrier present only. As can be seen, variations in pulse phase caused by
modulation, for small phase changes, will cause amplitude changes
substantially proportional to these phase changes. These a-m pulses
are then handled in the usual manner.

Modulation of PRF.—In this scheme the variable that is modulated
is the PRF itself. The maximum range of variation is kept smaller than
one octave to prevent harmonics of the lowest PRF from interfering with
the highest frequency. As in the other sampling schemes the average
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PRF must be about three times as high as the highest desired modulating
frequency. Detection of the pulses is made in the usual way. The audio
output is obtained by putting the video signals into a filter designed to
pass only the audio frequencies. It should be remembered that since
the incoming signal amplitude is constant, limiting and slicing can be
employed; but because of the variable PRF, gating is impossible.

Other Schemes—Other schemes of modulation are possible, and
methods for their reception are obvious. Among these may be mentioned
a double-pulse scheme in which the spacing between the two pulses is
modulated. Clearly, this scheme is similar to pulse-length modulation.
Again frequency or phase differences between the two pulses can be used
if desired.



CHAPTER 3
THEORETICAL INTRODUCTION

3-1. The Mathematical Description of Noise.—It is well known that
the output of a receiver when no signal is present is not always zero but
fluctuates more or less irregularly around some average value. On an
A-scope, for instance, these fluctuations produce the typical noise that
often prevents weak signals from being de-
tected. This noise has several origins, to be
discussed in detail in the next chapters; the
question that concerns us here is how to de-
seribe quantitatively the noise output of a
receiver.

The answer is perhaps not obvious.
Merely observing the output y(¢) of a receiver
over a period of time (y may be a voltage, a
current, or the deflection on an A-scope) does
not make it possible to predict the output for
any later time or to predict the output as a
function of time for another receiver identical
with the first. Then how can any theory at
all be formulated? The answer is, of course,
by using the notion of probability. As we
shall see, certain probability distributions can
be predicted and observed. The noise output
of a receiver is a typical example of a random
(or stochastic) process. The systematic study
of such a process forms a recently developed
part of the theory of probability.!

. Let us assume that there are a great
number of macroscopically identical receivers
(called an “‘ensemble” of receivers) all
turned on simultaneously. The noise out- ¥1. 3:1.—Some photographs
of typical noise on an A-scope.
puts ¥ (), y.(f), . . ., are then observed.
All these functions will be different. At a definite time ¢ it can be
observed for what fraction of the total number of cases y occurs in a

1 Several aspects and applications of the general theory of random processes are
reviewed and extensive references to the literature given by S. O. Rice, ‘“ Mathematical
33
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given interval between y and y + Ay. This fraction will depend on y
and ¢ and will be proportional to Ay when Ay is small. It is written
Wi(y,t) dy and called the first probability distribution. Next can be con-
sidered all the pairs of values of y occurring at two given times ¢, and t,.
The fraction of the total number of pairs in which y occurs in the range
(y1, 1 + Ay1) at ¢, and in the range (ys, y: + Ays) at f» is written
Walys, t1; ys, t2) dy: dy: and is called the second probability distribution.
We can continue in this manner, determining all the triples of values of
y at three given times to arrive at the third probability distribution, ete.

The objection immediately occurs that observations of the noise
outputs on an ensemble of receivers can never be made. Such observa-
tions are not necessary, however, when the noise output is stationary.
This means that the influence of the transients (because of the switching
on of the receivers) has died down and that all tubes have warmed up
properly with the result that the receiver is in a stationary state. If one
observation is then made of the noise output y(¢) of the receiver for a very
long time, all the information desired will be received. The record can
be cut in pieces of length © (where O is long compared with all * periods’’
occurring in the process), and the different pieces can then be considered
as the different records of an ensemble of observations from which the
different probability distributions can be determined. Furthermore,
these distributions now become somewhat simpler. The first one, for
instance, will be independent of ¢; the second one will depend only on
the time difference t; — ¢, etc.; hence the stationary noise output will be
described by the series of functions:

Wi(y) dy = probability of finding y between y and
y + dy;

Wa(y1,ys,t) dy: dy: = joint probability of finding a pair of
values of y in the ranges (yi, y; + dy1)
and (yi, y2 + dys), which are a time
interval ¢ apart from each other;

Analysis of Random Noise,” Bell System Techn. J., 23, 282 (1944); 25, 46 (1945);
S. Chandrasekhar, “Stochastic Problems in Physics and Astronomy,” Rev. Mod.
Phys., 15, No. 1, 1 (1943); Ming Chen Wang and G. E. Uhlenbeck, ‘“On the Theory of
the Brownian Motion II,” Rev. Mod. Phys., 17, 322 (1945). Discussion in this chapter
will be restricted to the minimum requirements for the understanding of noise problems
in radio receivers. It may be well to point out, however, that these problems form
only a small part of the general theory of random processes. Other applications of
the theory are made in many branches of physics (as, for instance, in the theory of
Brownian motion and the theory of other fluctuation phenomena), in hydrodynamics
(especially in the theory of turbulence), in the theory of the errors in gunnery and
bombing, in economics (especially in the theory of time series), etc. Another applica-
tion, the so-called ““random walk”’ problem, will be treated in Chap. 6.
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Waly,y2ysints) dyr dy: dys = joint probability of finding a triple of
values of ¥ in the ranges diy, dy,, dys,
where dy, and dy, are the time interval ¢,
apart and dy. and dy; the time interval
t; apart, etc.

It should be emphasized that these probability distributions represent
everything that can be found out about the random process, and one
may therefore say that the random process is defined by these distribu-
tions. Of course, the functions W, are not arbitrary and unrelated to
each other; they must fulfill the three obvious conditions:

W, 2 0, because the 1V, are probability densities,

Walyy, ti; Yo, t2 . . . Yn, {») must be a symmetrie function in the set of
variables yy, f1; 2, ts, . . . , Yn, In, since W, is a joint probability, and
Wilys, t; - - - ey te)

= / T /dym C Ay Walyy t; 0 0t Yy ta), (1)

since each function W, must imply all the previous W, with k < n.
The set of functions W, form therefore a kind of hierarchy; they describe
successively the random process in more and more detail. A complete
theory of the random process should make it possible to derive the general
distribution function W, from an analysis of the origins of the random
process. For the noise produced in or passing through /near networks
this can actually be done (see Sec. 3-G). However, the investigations
here will usually be restricted to the first two probability distributions.

3-2. Average Values.—From the first probability distribution Wi(y,t)
the average value of y can be found.

g = / dy yWi(y,0). (2)

Clearly, this average value will in general depend on the time £&. It can
be determined by averaging, at the time ¢, the noise outputs y1(D),
y2(t), . . . of the ensemble of receivers mentioned in Sec. 3-1. It will
be spoken of, therefore, as the ensemble average and indicated by a bar.
It must be distinguished from the time average, defined and denoted by

(3]

+7
7= lim é f_; dt y(0). 3)

00— w
2

This will be independent of the time, of course, but will, in general, differ
for the various functions y:(£), y2(t), . . . of the ensemble. We can still
average over the ensemble; then the same result will be obtained as the
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time average of . Or in a formula

v=7 (4)
Only for a stationary process will the two ways of averaging give the same
result, since then 7 will be independent of the time and % will be the same
for the different functions y:(f) of the ensemble.

The same distinction must, of course, be made for the average values
of functions of y. Usually it will be clear from the context which kind of
averaging is meant. Especially important are the different moments of
the distribution W, defined by

M =7 = f dy W, 5)

From the first. and second moments there is derived the fluctuation or
variance

G =7 - @ = / dy (v — §)*W, ®)

which is a measure of the width of the distribution W.(y) about the
average value §. From the third moment can be obtained an idea of the
skewness of the probability distribution, more and more information
about Wi(y) being acquired as additional moments are known. The
problem whether or not the knowledge of all moments determines the
probability distribution uniquely is a famous one, but it will not concern
us.! In certain instances this is actually the case, as, for example, when
the m’s fulfill the relations

Mokr1 = 0,
My = 135« - - (2% — 1)(m2)"., (7a)
The W,(y) is then the Gaussian distribution
1 - \
Wi(y) = e Zm, (7b)

A Y 21I'Mz

Of special importance is the combination of the moments embodied in the
so-called characteristic function

(gs)"
n!

$i(s) = e = Ma = /dy evWa(y). (8)
n=0
1Cf., for instance, M. G. Kendall, Advanced Theory of Statistics, Vol. 1, Griffin,
London, 1943, Chap. 4.
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The significance of the characteristic function lies especially in the follow-
ng two theorems:
1. The characteristic function determines uniquely the probability
distribution. In fact, from the Fourier integral theorem it follows!
that

I A
M@=ﬂﬁm%ﬁ%m 9)

2. If the characteristic functions of two zndependent random variables

y and z are ¢(s) and ¥(s), then the characteristic function of the

distribution of the sum y + z is given by the product ¢(s) - ¥(s).2

Let us now turn to the second distribution function Wy(yy, t; ¥2, t2).
The most important average value derived from it is

Yy = _// dyy dys yyy2Wa(yy, b yo, ta). (10)

In general, this will be a function of # and ;. Letting t, = ¢, + 7, we
can perform an additional time average over ¢; and then obtain a function

of r
9
1 ftr ==
R(T) = llm b dtx ylyz(h, 141 + T) = Yy (11)
60— w T _9
2

The same function R(7) is obtained, of course, by taking the ensemble

average of
]

T 7 Sera it e . 1 [tz
wwm+ﬂ=hm7/emeMh+d (12)
O— w0 -3
For a stationary process Eqgs. (10) and (12) give the same result. The
function E(r) gives a measure for the correlation between successive
values of y and is therefore called the correlation function. When y(¢;)

and y(¢;) are independent of each other,

Walyy, ti; Y2, ) = Wiyity) - Walys,ts)
and
Yy = F1° §a

! One might think that Egs. (8) and (9) answer the previously mentioned question
of moments in the affirmative. In fact, it can be proved in this way that Eq. (7b)
follows from Eq. (7a). The general mathematical problem, however, is to find the
conditions that the m, have to fulfill so that ¢,(s) exists and has a Fourier transform
that is always positive.

2 For a proof and also many examples and references, ¢f. Kendall, loc. cit. For the
strict mathematical discussion of the notion of characteristic function, see H, Cramer,
Random Variables and Probability Distributions, Cambridge, London, 1937.
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For noise (without signal), this situation will occur when the time
interval t; — t; = 7 is sufficiently large. For r = 0, it is obvious that

Yy — Y = / dy y*Wiy,t).
Tt is sometimes convenient to work with the function!

W —9) Y — 9)
E——————ve | 1
—9* (1%
which will be called the normalized correlation function. We may note
some properties of p(r):
1 p(0) =
2. p(r) = p(O)
3. For noise without signal p(r) — 0 as 7 — oo,
4, If p(r) = 0 for 7 = 7,, then?

To
p(n) p(0) cos —— + 7’
where 7 i3 an integer.

As already mentioned in Sec. 3:1, W2 (y1, t1; ¥z, {2) gives more informa-
tion about the random process than the first probability distribution
Wi(y,t). Infact, W, follows from W,, since one has

p(r) =

Wilynti) = / dys Walys, t1; ys, t2) (14)

and
W?(y2yt2) = / dyl Wz(yl: tl} Yo, t2)1

which is a special case of the general Eq. (1). It is sometimes impor-
tant to introduce instead of W, the conditional probability distribution
Pa(yy,ti|yz,tz), which gives the probability of finding y between y, and
y2 + dy; at time {3, given that y = y, at time ¢;,. Of course,

Walyy, ti; Yo, 1) = Walynt)Pe(yrta|ye,te), (15)
and P, must fulfill the relations

1

)

/ dyz Pa(y1,t|yats)
(16)

Wiys,te),

i

/ dyr, Wi(y1,00)Pa(y1,t:|ys,ts)

1 This function is written for a stationary process, with which we shall be con-
cerned most often.

2 For the proof, ¢f. R. P. Boas and M. Kae, ‘“Inequalities for Fourier Transforms of
Positive Functions,” Duke Math. J., 12, 189 (1945).
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which follow from Eq. (14). From P may be obtained conditional
average values, as, for instance,

g = /dyz Y2Pa(yr,talya,ts),

which is the average value of y at ¢, when one knows that y = y, at time
t;. For a stationary process, P, and, therefore, 73** also will depend only
on tz -l =

The notion of the characteristic function for W, can also be general-
ized by forming

¢2(31’32) = em — /-/dyl dy2 ei(-‘xy1+871/2)W2(y1’y2)_ (17(1)

We again have analogous theorems; in particular W, is.-found from ¢, by

Walysys) = (%T)Q f /ds; dsg eints g,(s, s,). (17b)

3:3. The Relation between the Correlation Function and the Spec-
trum.—Of special significance for the applications to signal detectability
is the notion of the spectrum! of a random process. Let us suppose that
a function y(f) is observed for a long time 6. Assuming that y() = 0
outside the time interval O, the resulting function can be developed in a
Fourier integral,

+w
y@) = /_,, df A(f)er=r, (18)

where if A*(f) denotes the complex conjugate, A(f) = A*(—Jf), since
y(t) is real. It is well known (Parseval theorem) that

/+: yA(t) dt = /;gyz(t) dt = /_+: af JA(D

2

Using the fact that |A(f)|?is an cven function of f and going to the limit
0 — «, this equation can be written as

1 +$ -
v=am L[ eoa=[Taen, (19)
08— ~3 0
where
G = lim 2140 (20)
O— >

1 Cf. Rice, Bell System Tech. J., 28, 310 (1944); Wang and Uhlenbeck, Rev. Mod.
Phys., 1T, 326 (1945); further references are given in these papers,
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and will be called the spectral density or the power spectrum of the func-
tion y(t).
Let us consider next the average value,

2}

e 1 3
YOy +7) = lim & f o YWyt + 1) dr.
2

— ®© -

By introducing the Fourier expansion [Eq. (18)] and using the Fourier
integral theorem, it is easily shown that

FOTETT - ﬁ 4f G(f) cos 2nf, (@1a)

from which it follows by inversion that
G(f) =4 j/ dr y(t)y(t + 1) cos 2xfr. (21b)
o

All this holds for any function y(f). Let us assume, now, that we have
a random process and that y(¢) is a member of the ensemble of functions
y(t), yo(f), . . . , mentioned in Sec. 3-1. Each of these functions can
be developed in a Fourier integral, and the corresponding G(f) can be
averaged over the ensemble. The resulting G(f) will be called the spectral
density or the power spectrum of the random process. From Eqs. (21a)
and (21b) it follows that the correlation function R(7) and this spectrum
are each other’s Fourier cosine transform, or

R(r) = A” df G(f) cos 2xfr,
(22)

(f =4 /(')” dr R(r) cos 2xfr.

This is the relation referred to in the title of this section.
The following additional remarks may be helpful.
1. Equation (19) can also be averaged over the ensemble, which gives

¥ = [) df GF). (23)

2. For a stationary process the averaging over the ensemble can be
omitted, since each member y.(f) will lead to the same spectral
density G(f).

3. The spectral density G(f) may contain singular peaks of the well-
known Dirac é-function type. This certainly occurs, for instance,
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when 7 is not zero or, in electrical language, when there is a d-c

term. Then
G(f) = 2@)2(f) + G.(f), (24)

where §(f) is the Dirac §-function.!

4. For pure noise the peak at f = 0, corresponding to the d-c term
will usually be the only peak, so that G;1(f) will be a regular func-
tion, representing the really continuous spectrum. From Eqgs. (19)
and (24) it is apparent that the area under this continuous spectrum
is equal to the fluctuation or variance of y(¢). In this case it is
sometimes convenient to introduce the normalized power spectrum

8¢ = 2,
[,7 &6

it becomes apparent that S(f) and the normalized correlation func-
tion p(r) of Sec. 3-2 are each other’s Fourier cosine transform.

5. The relations [Eqs. (21a) and (21b)] are perfectly general. They
hold, for example, when

y@®) = A + B sin 2z(fot + ).
We then have
7= A+ 3B,
yOy(t + 1) = A* + B2 cos 2xfr,
and from Eq. (21b) it follows that
G(f) = 24°(f) + ¥B%(f ~ fo),

where the following relations have been made use of :

2/” dr cos 2afr = 8(f);
’ (25)

4 /‘;w dr cos 2xfr cos 2nfor = 8(f — fo).

The spectrum therefore consists, as it should, of the two frequencies
f = 0and f = fo, corresponding to the power in the d-c term A%and
the power $B? in the a-c term.

6. When there are noise and a signal, the spectral density G(f) will
consist (in addition to the d-c term) of a continuous spectrum and a
number of peaks at the discrete frequencies f; of the signal. The

1 This function has the following properties: 3(z) = 0 for z » 0 and 8(z) = o for
z =0 in such a way that the integral, /_ . 5(z)dz = 1; 3(z) = 8(—z) so that

/0" 5(z) dz = }.
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magnitudes of the peaks—or better, the area under the peaks—
correspond to the power spectrum of the signal.

7. When a stationary random process with spectral density Gi(f)
passes through a linear device that is described by an impedance
function Z(f), then the output will again be a stationary random
process and the spectral density will be

Go(f) = |Z(f)|*G:(f)- (26)

3-4. Examples of Spectra.—The importance of the relation in Egs.

(21) or (22) between the correlation function and the spectrum lies in the

fact that it is often easier to calculate the R(r) or p(r) by means of Eqs.

(10) and (11)than to calculate the spectrum directly. To elucidate the
relations in Egs. (22), consider, for example, the case where!

o) = &5
Then

_ 48
S0 = g ¥ @ @0

p(r) = e~

=
s = 2T

when

(28)

When p(r) is a monotonically decreasing function of =, S(f) is also a
monotonic decreasing function of f. The funection S(f) will become
flatter and flatter as p(r) becomes narrower. If p(r) drops to zero in a
very short time A, then S(f) will be essentially constant up to a very high
frequency of the order of magnitude 1/A. We call this a white spectrum.
The limiting case—where S(f) = constant for all f—would correspond
to no correlation at all between successive values of y; hence for all ¢,

Walyn, by; Yo, t) = Wilynt) Wilysts),

and we have what is called a purely random process. 'This is, of course, an
ilealization that in actual cases can only be approximated.

When S(f) has a maximum at some high frequency f; and is sym-
metrical around the maximum, so that

S() =F(f — fo),
F(z) = F(—z),
then
p(1) = cos 2xfyr. / dx F(x) cos 2nzr, (29)
1In these examples the normalized correlation function p() is used and the result-
ing spectrum is therefore also normalized; p(0) is always unity, and consequently the

total area of the spectrum is '/0’ S¢) df = 1.
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as long as the width of S(f) is small compared with fo. To illustrate,
when S(f) is constant over a band of frequencies of width B around f,,
then

o(7) = cos 2xfyr ;1];; sin wBr, 30)
as long as B < fo. The correlaticn function will therefore be like a
damped oscillation with frequency fo. The smaller B is, the farther the
correlation goes out in time. A limiting case is when S(f) = 8(f — fo);
then p(7) is strictly given by cos 2xfor.
It is not necessary, of course, to calculate the power spectrum by
means of the correlation function. Sometimes it is just as easy to derive
the spectrum directly. Let us consider, for example, the case where

Ghpr— % Q3 @[]
—————— k— @y—rte— @——@5—+l -~ - - --

F1c. 3-2.—Series of pulses of random height but fixed repetition interval.

y(t) consists of a series of pulses that have identical shape and a constant
repetition frequency but whose heights vary according to some prob-
ability distribution (see Fig. 3-2, where the shape of the pulse is assumed
to be rectangular).

Then

y(t) = 2 al'(t — k6o), (31)
k

where 0, is the repetition period and the a; are the heights that are dis-
tributed according to a probability distribution, say P(a). From Eq.
(18) is obtained ox

A = [ auer =B Y a2

k=—N
where

+ =
B(f) = /_ dz F(g)e 2%,

and where it has been assumed that there are approximately (2N + 1)
pulses between the times — N0y to +N©O,. From Eq. (32) it follows that
the average power spectrum is given by

O = lim s AT

+N
- 2 1Bk 1@ - @1+ @2 Jim ot N el )
-N
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The sum inside the braces will be (2N + 1) for f = n/0, when = is an
integer; hence in the limit G(f) will be infinite. For other values of f the
sum will be oscillatory, and for N — = the limiting value will be zero.
Clearly, the limit has the character of a series of peaks, or é-functions, at
the frequencies n/0,, and G{f) can be written

|B(f)|2‘[a2—()2]+(a) 2 (f e)’

Therefore, a continuous spectrum is obtained that has the same shape as
the power spectrum of a single pulse. The total intensity is determined
by the fluctuation a? — (a)? of the pulse heights. There is, in addition,
a discrete spectrum at the frequencies n/6,, where the intensities are also
determined by the spectrum of the single pulse.

ri i r 11 i 1
——-hoperle—ape, —oleo re o e tared--—-

F1e. 3-3.—Series of pulses of fixed height but variable repetition interval,

N =

®|l~3

Let us consider next a series of pulses that have identical shape and
height but a repetition period varying around an average value according
to some probability distribution (see Fig. 3:3, where the pulse shape is
again taken to be rectangular). Now

y(t) = 2 F(t — k6o — &), (34)

k

where 8, is the average repetition period and e is the deviation of the
kth spacing from ©,, so that ¢ = 0. Let P(¢) be the probability dis-
tribution for ¢, and let

+ =
o(f) = / de €27/ <P (e).

Then the following expression for the power spectrum is obtained:

o = & i fin - lonin + 228 Y o s - 2)) e
n=0

Here, the shape of the continuous spectrum and the intensities of the
discrete spectrum are no longer determined solely by the spectrum of the
single pulse but depend also on the function ¢(f).

Suppose that the function y(f) consists of pieces of the function
e/ the lengths I; of these pieces being distributed according to the
probability distribution P(I) (see Fig. 3-4). Let us suppose further that
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at the end of each piece the phase changes and that these phase changes
are governed by the probability distribution Q(a). The normalized
power spectrum is given by!

ezri(fot-l-al) ez#i(f°t+ul+az) 32""%”“1"'“2*“3’
-t L, et - - -
4 : i i
Fic. 3-4.—Series of pieces of the function e2%ifo of random lengths and with random phase
changes.
1
S(f) = ————
0 w2 (f — fo)?
X1— A4 (A% + B2 — 1)¢(f) — (A2 + B® — A) [¢*(f) + ¢*(f)] (36a)
[1 — Ae(f) + BY(NH]* + [A¥(f) + Be(/)]*
where

+‘l
A+1iB = /_ da Q(a)e?rie,
o) + ) = [ ap@eses,
[ = /ndl IP(l).
0

Some special cases are of interest. Let fo = 0 and Q(a) = §(x ~ a), so
that A = — 1, B = 0; this leads

. . ll 13 ls l7
to a step curve of height +1, in
which the lengths of the stepsare ~__~ I"l I | - I l - | | T
distributed according to the prob- . L ls

ability law P(l). From Eq. (36(1) Fre. 3-5—Step curve of height +1 with
is obtained random lengths of steps.

21— ¢ -y

S(f) = — )
Do

(36b)

where now, of course,

an+Mﬁ=ﬁde¢M
For P(l) = Be# this becomes
- 88
S(f) - W:
which is analogous to Eq. (27). For fo # 0 and P(l) =e¢-#, Eq. (36a)

1 This equation is a generalization of a result obtained by H. M. Foley, “An
Investigation in the General Theory of Pressure Broadening and an Experimental
Study of Pressure Effects in the 144 Band of Hydrogen Cyanide,” Ph.D. Thesis, U. of
Mich., 1942.
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reduces to
B 48(1 — A)
T BN — A + [2r(f — fo)? + BBIY

which is the result obtained by Foley. It gives the typical shape of a
pressure-broadened spectral line.

3:6. Some Properties of the Gaussian Distribution.—The following
are some of the properties of the one-, two-, and multidimensional
Gaussian distribution that are of importance for future applications.

The One-dimensional Gaussian Distribution.—The one-dimensional
Gaussian distribution

S(f)

(36¢)

1 _(y—a)?
Wy = — 2a? 37a
) N (37a)
with the average value § = a and the variance (y — %)? = ¢? has for its
characteristic function

+
M0=/ dy ¢WW (y) = et/ (370)

From the second theorem on characteristic functions mentioned in Sec
3-2 it follows that the sum of two independent random variables, each of
which have a Gaussian distribution with means a,, @; and variances
o, o2, will also have a Gaussian distribution with a mean a; + a. and a
variance ¢} + ¢2. Roughly speaking, this property is also characteristic
for the Gaussian distribution. If two independent random variables are
distributed according to a distribution function W(y) that has a finite
variance, and if the sum is also distributed according to the same law,
then W must be the Gaussian distribution.!

The significance of the Gaussian distribution law lies especially in
the so-called central limit theorem of the theory of probability. The
following is a special case of this theorem: If i, 3, . . ., z, are n
independent random variables, which are distributed according to the
same probability distribution and which have a zero mean value and the
finite variance o, then the distribution of

=951+x2+"‘ + z,
vn

will approach the Gaussian distribution for large n,

y

yl
e 2%

o \Ver
1 For proofs and more precise formulation, see H. Cramer, Random Variables and

Probability Distributions, Cambridge, London, 1936, Chap. VI, Theorems 17, 18, 19.
That the variance be finite is an essential condition.
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whatever the original distribution function® of the z;, This independence
of the original distribution function is the surprising feature of the
theorem. Of course, how the Gaussian distribution law is approached
will depend on further features of the distribution function of the z;. It
can be shown,? for instance, that asymptotically

1 Yy p dF _¥
Wy =~ ——[e 208 — —~=-—¢ 27 + + - - 38
W=~ 5 ( 6 /n Y ) (38)
where p = ¥ and where the further terms in the development contain
higher powers of n—* and, also, the higher moments of the distribution
function of the x;. Usually the Gaussian distribution already becomes a

very good approximation once n is greater than 10.
The n-dimensional Gaussian Distribution.—This can be written

1 1 —% z By
Wyy ye, - 0 yn) = (e ML, (39)

where we have already assumed, for simplicity, that the y,’s are measured
from their mean value, so that 3; = 0. The matrix B is a symmetric
and positive definite matrix; the meaning of the elements By, and of the
constant b is connected with the quadratic averages

+ >
bt = Biti = / o f vy Wy -+ -y dys - dya (40)

It can be shown that By is the cofactor of the element b;; in the matrix
b whereas b is the determinant of the matrix b. To do this, let us first
show that the characteristic function of the n-dimensional Gaussian

distribution is given by
n
-1 britatt

Yts -t =e 7T (41)
For this we must calculate the integral

1 + = iEyhtb
W["'/dh"'dtnel Yt -+ - 0 t).

! For a proof and more precise formulation, see ibid., p. 52. The condition that
Z; = 0 s, of course, no restriction, since that z can always be measured from its mean
value. For the connection with the random-walk problem, see Sec. 3-6.

2 This is a special case of Theorem 25 in ¢bid., p. 81, For a formal proof see
Sec. 3-6.
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Introduce instead of the i new variables ux by means of

¢ U — 1 By,
e = Uk byr-

r=1
By using the well-known theorem
bn r = ub
r=1

we find

. 1 1 1 B

1 z LY — 3 z brtely = — 3 2 brwcu, — 3 T)IE! Y.

k Py, ki ki

Thus the integral becomes

By transforming the quadratic form Z bnuit: to principal axes the last
integral is shown to be (2m)*%~%, so that we really get the Gaussian
distribution [Eq. (39)].

It remains to be shown that the bix are really the quadratic averages
yxyi.  The simplest way is to use the characteristic function. In fact,
if F(y1 . . . y») is a polynomial in g, . . . ya, it follows from the Fourier
integral theorem that

Fm)=/"'/dyl"'dynF(yl"'yn)W(yl"'yn)

+ =

e 10 134
W(tl « . -t,.) =[F(_’;5t_17_1,a_[2’ Ce ey,

dtl R dt..e
19
7o )W‘ Tt ],.=l,-.. om0 (42)

— 12 ) buitats
_— (_ 32 . % ) —
L . 6tl.- 6t¢ 1= . .. =tn=0 K

~ps !

Therefore,
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This result could also have been proved directly by ealculating the
integral in Eq. (40). Since the matrix b/b is the inverse of the matrix B,
it follows that b will also be a symmetric and positive definite matrix.

As a special case of Eq. (39), let us consider the two-dimensional
Gaussian distribution. The matrix b is usually written

b — y1 ylyz} { }
T por 7%

calling 42 = o2, 42 = 7%, Y1y = por; p is the correlation coefficient. This
gives

By = 7% By, = —por; By = ¢%; = o1 — p?),

so that the distribution can be written

_ 1 __ 1 yl Yi _ 2oy |,
W(yl,yZ) - 2mor m exp [ 2(1 — oY + 72 oT (43)

The general theorems mentioned in connection with the one-dimen-
sional Gaussian distribution can also be generalized to the n-dimensional
case. First of all one has again a central limit theorem. Interpreting
Y1 . . . Ynasthen components of a vector Y, and providing Yy, Y,, . . .,
Yy are N independent random vectors, which are distributed according
to the same probability distribution and which have a zero mean value
and finite quadratic averages, then according to this theorem, the distri-
bution of

Y=Y1+Y2+ st +YN
VN
will for large N approach the Gaussian distribution, regardless of the
original distribution function' of the Y. There is, furthermore, the
theorem that when Y; and Y, are two independent random vectors, each
of which has a Gaussian distribution, the sum Y; 4+ Y. will also have a
Gaussian distribution. This stability property is, with certain restrictions,
again typical of the Gaussian distribution.

Another aspect of the stability of the Gaussian distribution is

expressed by the following theorem (needed in Sec. 3-7). Suppose the

variables xy, z2, . . . , Z. are distributed according to
Wz, - -+ za) = 1 1 _%;ﬂ%i’ (44)
1 ) = (2m)2 o0y - - op ’
Let 41, ¥2, * * -, ¥s (s = n) be s linear combinations of the z/'s,

1 Cf. ibid., Chap. 10, Theorem 20q.
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n
yk:EO‘kixb k=1,2,"‘,8,
=1

where the ai’s are constants. The y,’s will then be distributed according
to an s-dimensional Gaussian distribution of the form in Eq. (39) (with n
replaced by s) and with

bkl = M = 2 akiam%. (45)

i=1

To prove this, there may be used the integral representation of the
Dirac é-function

+
sz — z') = %r / dt e, (46)

which allows one to write for the distribution function P(y; . . . ¥s) of
the y; the expression

+ =
P(yl---ys)=/—---/dxl---dxﬂW(xl-'-zn)

n + =

1 1
X l—[ 6<yk — E%i%‘) T @r) ey - - anf o /
E=1 i w

i=1 —
n n
_%in!/vﬂ + bl P (yk— E ah‘:h)
dI1 e dx,,e 1 / PN /dt1 . e . dt.; l—[ e =1
— =® k=1

Interchanging the integrations over the z; with those over the #, the
integrations over the z; can easily be carried out, obtaining

1 += ’l:Eykth -3 zbmm
P(yl"'ys)=(27r\3/"'/dtl"'dtcel ko

where the by's are given by Eq. (45). Or, in other words, the character-

istic funetion of Py, . . . ) is exp (— % Zbuiily), which is nothing but
Eq. (41). Therefore P must be a Gaussian distribution of the form in
Eq. (39).

3-6. The Random-walk Problem.—Consider a point that can move
on a straight line with successive steps, either to the right or to the left.
The steps will not be of equal size, but there is a basic probability ¢(z) dz
that the point will make a step of length between x and x + dr. What
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is the probability ¢.(2) dz that after n steps the displacement of the point
lies‘between z and z + dz?

This is the famous random-walk problem formulated for the one-
dimensional case. Clearly it is intimately connected with the central
limit theorem of the probability theory, sincez = ¢; + 25 4+ - - - + z,,
when the z’s are the successive displacements of the point. But the
problem occurs in many branches of physics; and especially for the fwo-
dimensional case, the problem can be interpreted as the problem of the
composition of n isoperiodic vibrations with given probability distribu-
tion for the amplitudes and for the phases.! The problem occurs in this
form, for instance, when one investigates the return of a radar signal
from a cloud. The different water drops produce scattered waves, each
having different amplitude and phase. What we want to known is the
probability for a certain amplitude and phase of the resultant of all these
scattered waves. The problem is of fundamental importance and merits
a brief solution here. For the detailed application to the problem of the
radar return from a number of independent scatterers (clouds, “ window,”
etc.), see Chap. 6.

Since the successive steps are independent of each other, ¢.(z) will
fulfill the equation?

+ =
$a(2) = /_m $os(z — )9(2) d, (47)

with ¢:1(z) = ¢(z). The solution of this equation follows immediately
from the convolution theorem of the Fourier transform. Let y.(u)
be the Fourier transform of ¢.(z); then we obtain from Eq. (47),

‘#n(u) = \I/ﬂ—l(u)\b(u);
with ¢1(u) = ¢(u). Therefore ¥.(u) = [¥(u)]", and

+ ©
6@ = o [ awepor, (480)

1 This was the formulation of J. W. 8. Rayleigh, Scientific Papers, Cambridge,
London, 1899-1920, Vol. I, p. 491; Vol. IV, p. 370, who first gave a solution of the
problem for large n. For a complete discussion of the problem and for further refer-
ences, ¢f. S. Chandrasekhar, “Stochastic Problems in Physics and Astronomy,” Rey.
Mod. Phys., 16, No. 1, 1 (1943).

2 The variables z and y can have all values between — « and + . Of course,

+w
f_ . da(x) dr = 1,
since ¢(z) is a probability density. From Eq. (47) it follows that

f_+: $n(y) dy = [_+: bn_1(2) dz,

so that the total probability remains 1, as it should.
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with
+ @
v(u) = / dzr ¢(x)e e, (48b)

To discuss the behavior for large » and, especially, to see the connec-
tion with the central-limit theorem, let

_ Ttz 4T, v

4
y=%— ’\/’l—t s '\/;l,

and assume that

+ @

x = f z¢(x) dz = 0.

Developing Eq. (48b) in powers of v one obtains

— 4

2 3 __
Y(v) 1—;’—nx2+§n—9—éz3+0(%,)

|
[
|
v
3
i
| —|
f—
+
®| «
&
h:
&ﬂl
+
=
N
N| ~-
SN—
—

Therefore,

- n _1[* -w—”—;r-[ W (1 ]
B, (y) = Vvn ¢n(z) =5, dve 1+ 1_1:,:3 +0 -

_ 1 p da te iy -T2

_5(1_6—\/ﬁd—y3+ )f dve™ *

N Y U SN A P
‘avz(l 6 T )‘“’ ’
calling % = ¢? and z° = p. This is Eq. (38); for large n, ®(y) becomes
therefore the Gaussian distribution and the error is of order n—* when the
third moment! p # 0.

For the two-dimensional problem the treatment is similar. One
obtains, for the probability that after n steps the point lies in the region
dx dy, the general expression

4+ =
Wr(zy) = (21+)2 / / du dv e[ (un)]",

where
+
Y(up) = / / dz dy e~ mtody(z,y), (49)

t Note that the error is of order 1/n when ¢(x) is an even function of z. It is also
easy to carry the development one step further; the next term in the parentheses is

1

_[(_4_3,,.4)£ + 2 2£]
2| ar Py
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and w(z,y) = Wi(z,y) is the probability density for one step. The
most important case for the applications to be discussed in Chap. 6 is the
one in which w(z,y) is isotropic, so that one can write, introducing polar
coordinates,

w(z,y) de dy = 2—17r f(r) dr do.

By a calculation similar to that in the one-dimensional problem, it can
be shown that for large N,

I N R T N
Wa(z,y) = ll +m[zﬁ)‘z 1](3_:Ei+6y2> + };‘I‘oe 1
(50)

where
r? =/ dr f(r)r? F=/; dr f(r)ré,
0

and I, = Nr:. Except! for z, y>> I, (where Wy is small anyway),
Wy can be replaced by the isotropic two~dimensional Gaussian

distribution
_rty

1
W(zy) = Fe 1 (51)

with an error of the order 1/N. For I = z% + y? this leads to the
distribution

_I
W@ﬂ:%em (52a)

from which follows
I=1I, T =1 =13 (52b)

This is sometimes called the Rayleigh distribution.

3-7. The Gaussian Random Process.—Noise problems in radio
receivers, at least up to the detector stage where nonlinear elements begin
to enter, involve a special type of random process (the Gaussian random
process), for which a complete theory can be given. These processes are
characterized by the fact that all the basic distribution functions W,
mentioned in Sec. 3-1, are Gaussian distributions. This fact could be
taken as the defining property of the process. But since, as we shall see,
the spectrum essentially determines everything, it is, from the physical
point of view, more natural to start with the Fourier development of the
Gaussian random function y().

Consider again, as in Sec. 3-3, the stationary random function y(¢)
over a long time interval 6. In contrast to what was done? in Sec. 3-3,

1 This is of course a special case of the central limit theorem for two dimensions.
? Where y(f) was taken zero outside the time interval 6, and the resulting function
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let us assume now that y(¢) is repeated periodically with the period 6 so
that y(t) can be developed in a Fourier series

y(@) = z (ax, cos 2xfit + by, sin 2xfil), (53)
k=1

where fi = k/6. There is no constant term, since we shall assume that
the average value of y(¢) is zero, an assumption that does not constitute a
restriction, of course. The different members of the ensemble of fune-
tions () will have different Fourier coeflicients ai, b;. These coeffi-
cients are therefore random variables, and we shall assume that they are
all independent of each other and have Gaussian distribution with average
values zero and with variances which may depend on the order k¥ but
which are the same for the a’s and the b’s. Or, in fj)rmula,

ax = by =0,

- —_— 54
ard; = bkbl = 0'26}.,1; akbz = 0. } ( )

The probability that the a; and b; are in certain ranges dai, db; can be
expressed as follows:

©

1 _ak2+bk2
W(ay, s, = = * 3 by, by - - =) = l—[ 27026 B0kt . (55)
k
k=1

The variances ¢ are connected with the spectral density or power spec-
trum! G(f); in fact,

ot = 56, (56)

since

&

yi(t) = z [a2 cos? 2nfit + b sin? 2nfit] = z o}
P)
1
0

2 G(fi) = / G(f) df = o, (57)
- 0
when @ — «. This is identical with Eq. (12) or (23).

It follows from these assumptions that the basic distributions of Sec.
3-1 are all Gaussian. The method is best explained by considering a few
examples.

was developed in a Fourier integral. Of course, both methods are artifices to obtain
convergent expressions. Afterward one goes to the limit © — «; the two methods
will then give the same results, and © will drop out of all the final formulas.

1 The bar is omitted since y(f) was assumed to be stationary.
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The Distribution of y at Fived {—According to Eq. (53), y is, for a
given ¢, a lincar function of the basic random variables a,, b;. From the
theorem proved in Sec. 3'5 (see page 49) we know that the probability
distribution will be Gaussian with a variance given by Eq. (57) and a
mean value zero. The time ¢ has disappeared; this is as it should be,
since W1(y) must be independent of ¢ because the process is stationary.

The Joint Distribution of y(t\) and y(l.).—Since y(¢;) and y(t:) are
both linear functions of ax, b;, one will obtain, according to the theorem of
See. 3:5, a two-dimensional Gaussian distribution; y*({;) and y*(t;) are
again given by IXq. (57), and

yl)y(ts) = 2 (a—z cos 2rfity cos 2xfits + DY sin 2mfit; sin 21rfk12)

I3

= z o} o8 2nfi(ty — 13) =~ / df G(f) cos 2nfr = p(r)e® (58)

T 0
The correlation depends therefore only on 7 = #, — 4, as it should, since
the process is stationary. The distribution function [¢f. Eq. (43)] is

A j— 1 - — 1 2 2 _
” 2(1/1,1/2,7) - 27ro'2 ‘\/T‘sz exp [ 20_-_3(1 — pg)(yl + Y2 2P?!1y2>:|-

(59)

The quantity p(+) is the normalized correlation function, and Eq. (58)
expresses again the connection with the normalized spectrum,

s = Lo = 2D
L dremn

The Joint Distribution of y(t1). y(ts), and y(t;).—We can go on in the
manner just described. We can consider the third distribution function
Wiy, t1; ys, to; ya, ts), which will be a three-dimensional Gaussian dis-
tribution depending only on {; — ¢; and ¢;3 — ¢». And from the theorem
of Sec. 3-5 it follows clearly that a/l the distributions W, will be Gaussian
and will depend only on ¢? and p(r),

Distribution Functions of the Derivatives of y.—In the same way there
can also be derived distribution functions in which the derivatives
¥@t), y'({t), . . . appear. Since y'(t), ¥''(1), . . . are also linear func-
tiuns of the random variables a;, by, it is clear that their distribution
functicns will also be Gaussian, and we find, for instance, that

T = / " e ar,
. ow (60)
FW=ﬁrwmmﬁ
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etc. We can also consider joint distributions of y({) and its derivatives,
as, for example, the distribution of ¥ and %’ at a fixed t. This will be a
two-dimensional Gaussian distribution, which is especially simple, how-
ever, since y and ¥’ at a given ¢ are not correlated. One gets, namely,

yOy'(t) = z 2nfy, sin 2xfit cos 2nfit(—al + BY) = 0.

k

Tt should still be pointed out that sometimes the distribution functions
derived in this way will have no meaning, since some of the integrals
over the spectrum are divergent. For instance, when p(r) = ¢ so
that G(fal/[8% + (2rf)?] [see Eq. (27)], the distribution functions in
which the velocity %'(t) appears will have no meaning, since [see Eq.
(60)] "% will not exist. In this case one may call the process nondifferen-
tiable. The degree of differentiability will be characteristic for the process
and will depend on the behavior of G(f) for large f.

Finally, a few words should be said about the justification of the
assumptions, embodied in Eq. (55), made in the beginning of this section.
In the actual problems of the signal threshold in radio receivers the con-
venient fiction is always allowed that the signal, before it enters the
receiver, is accompanied by a certain amount of noise. This will be
called the primary noise and can be shown to be Gaussian, with a spec-
trum that is constant up to a very high frequency, so that for all practical
purposes one can consider it a white spectrum (see Sec. 3-4). It can
therefore be said that the primary noise s a purely random, Gaussian
process. The proof of this statement must come from the analysis of
the origins of the primary noise. Tn Chap. 4 this analysis will be given
in detail for a few cases like thermal noise and shot noise. It is clear,
however, that when this primary noise goes through a linear device (as,
for instance, an i-f amplifier), which is characterized by an impedance
function Z(p), the output will again be Gaussian noise with a spectral
density D|Z(iw)|?, when D is the constant spectral density of the primary
noise source. In the next section we shall see what happens when
Gaussian noise passes through a nonlinear device.

3.8. Spectrum after a Nonlinear Device. Method of North.—Let us
suppose we have an s-dimensional Gaussian process y.(¢), y2(f), . . .,
7:(t), so that all the probability distributions are known, and let us
suppose that

z = F(yly Yo = 7 7y y‘) (61)

Tt is clear that in principle one can also {ind all the probability distribu-
tions for the random process z(t). For instance, Wi(z) dz would follow
from Wi(y:, . . . ys) dy1 . . . dy, by integrating over the y’s with the
tondition that the function F(y, . . . y.) must lie between z and z + dz.
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It is also clear that only when the function F is linear will the resulting

process z(t) again be Gaussian.
Gaussian process. The great difficulty then
is in finding out what happens when such
non-Gaussian noise passes through a linear
network like, for instance, a filter. This is
the reason why the main concentration has
been on the calculation of the speciral den-

Fy

In all other cases one obtains a non-

1—_

Y

sity, since this will give at least some idea of
the possible response of such a linear net- -1
work. D. O. North! has pointed out that Lo
the spectral density can be caleulated by first 3&;&}'3;?;’;_“” for
calculating the correlation function,

Z(tl)z(lz) = ] st [dYI deF'(Yl)F(Yz)Wz(Yly Yﬁ) la — tl)y (62)
where Y, is an abbreviation of y.(t1), y2(t1), . . . , ¥s(t1). From the

correlation function the spectrum can be obtained by means of the

”“’ﬂv%ﬁvﬂvl

H o

) J B o — z(t)
Fig. 3-7.—Effect of clipping on noise; large  Fia. 3-8, —Effect of clipping on noise; small

bandwidth. bandwidth.

general formula of Sec. 3-3. Most calculations of spectra have been made
by this method, which we shall call the method of North. The following
examples serve to illustrate the method.

Spectrum of Strongly Clipped Noise.>—Suppose that y(t) is a one-
dimensional Gaussian process and that F(y) = 1fory > 0 and = —1 for
y < 0 (see Fig. 3-6). The effect this has on the random function y(?) is
shown in Figs. 3-7 and 3-8; z(¢) will be a step curve between +1 and —1,
which is more or less irregular depending on whether y(¢) is more or less
sinusoidal. To find the spectrum of z(¢) we must calculate the correlation
function [Eq. (62)]

1 8ee for reference S. O. Rice, “Mathematical Analysis of Random Noise,” Bell
System Techn. J., 26, 45 (1945).

*The spectrum of strongly and partially clipped noise has been investigated in
detail by J. H. van Vleck, “ The Spectrum of Clipped Noise,” RRL Report 51, July 21,
1943. One special case will be discussed here; some further results will be given in
Sec. 12-5,
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“+ e
1
= — d1d2F 1F 2) "
R() 2W2\/1_p2/_/ Y1 dy2 F@)F (y2)

exp [ - W—l_pf) Wi+ i — 29?/11/2)],
using the result of Eq. (59) for the second probability distribution.
Clearly, F(y1)F(y2) = +1 in the first and third quadrant and = —1 in
the second and fourth quadrant. By introducing polar coordinates and
integrating first over the radius vector, the integral can be easily evalu-
ated. One gets

R(t) = ?rsin“l o(0). (63)

To find the spectrum one must calculate the Fourier cosine transform of
R(). The discussion is complicated and depends, of course, on what one
assumes for p(¢). Most interesting is the case in which the spectrum
S(f) of y(t) has a maximum at some high frequency f; and is symmetric
around f, [¢f. Sec. 3-4, Eq. (29)]. Then p(t) = cos 2mfit®(t), where $(f)
is the Fourier transform of the spectrum of y(f) with f; as origin; #(0) = 1,
since S(f) is assumed normalized to unity. Developing the sin~! in a
power series

1 1 2=
R(t)——( +§%'+2—'3%+ - ')=7—r—2app21”+1,

p=0

P
1 2p +1
cos Ptlg = 3% E (p _ s)cos (2s + De,

8=0

and using

we can write for the spectrum of z(¢)

() ——E / dr cos 27 [ — (2s+1>f01222,,(2p_+ l)w’“m, (64)

p=3

—

J LN JAN A
fo 25 35

F1G. 3-9.—Spectrum of clipped noise.

where we have neglected terms with cos 2xr[f 4+ (2s 4 1)f,], which is
consistent with the assumption that f, is large compared with the band-
width of S(f). The expression shows that there are overtones. The
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spectrum will consist of bands around fy, 2fo, 3fo, . . . , each of approxi-
mately the same bandwidth as S(f) (see Fig. 3-9). Of special interest
is the deformation of the band around f, from the original form S(J).
Taking s = 0 in Eq. (64) and making special assumptions for S(f), the

calculation can be carried out; for 100

S(f), a square band, the result r==T--7

is shown in Fig. 3-10, which is ! 0.90{ 1 -sn
taken from Van Vieck’s report. : 080 | |/
The deformation is small. There \4’ ¢
is, of course, less energy in the fun- 070

damental, since we have the higher 060

harmonics also. From Eq. (64) it 050

can be proved that the area under 040

the fundamental is reduced from 030}

1 to 8/#% so that a fraction

1 — 8/x% of the total energy is 020 ¢

converted into harmonies. This 010}

fraction and in fact the whole / } o~

distribution of energy over the T2 -0 0%h Lc:f-ﬁ;)z-—————'o

different harmonics are the same . )
Fr6. 3-10,—Spectrum of clipped noise;

as for a square wave of frequency shape of the fundamental. The quantity

fo. This conclusion is also plau- (f — fo) is in units of the half bandwidth of

o B K the noise before clipping.

sible, since y(t) will be very much

like a sinusoidal curve, the bandwidth of S(f) being supposed small com-

pared with fi.

Spectrum of Gaussian Notse after a Linear or Square-law Dztector.—
Suppose that the spectrum of the original Gaussian random process
V() is again concenirated around the high carrier frequency f; and that
it is again symmetric around f,. It is often convenient to measure the
frequency from fo and to write the Fourier development of V(t) in the
form

V(t) = z(t) cos 2rfet + y(1) sin 2ufot, (65)
where

4 o
z(t) = Z (ax cos 2xfit + bp sin 2wfil),
i (66)
y(t) = E (—ax sin 2xfyt 4 by, cos 2wfif),

and fi, = k/6 is measured! from fo. From the basic properties {Eqgs. (54)

! The lower limit in the sums should, of course, be —ko, when fo = £,/6, but it may
be replaced by — .
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and (56)] of the ax, b, it is easily proved that

4
O -rO = [ wen =a

+ =
z()x(t +7) = ylOlylt + 1) = /_., df Gv(f) cos 2xfr, (67)

+ =
Oyt +7) = / df Gv(f) sin 2xfr = 0,
since Gv(f), the unnormalized spectrum of V(t}—always with f measured
from fo—is supposed to be an even function of f. From the theorem of
Sec. 3'5 it follows that all the distribution functions of the xz(¢), y(f) will
be Gaussian, specifically,
1 _aigyr
Wilzy) = 5ot 22, (68a)

1
Wal@y, 915 292 7) = Gooma = 7 P

1
[— Ty —— =} + 1 + 23 + ¥5 — 2p(x122 + y;ya)]: (68b)

with!

4+ » + o
ot = / Gv(f) df; o2p(r) = / df Gv(f) cos 2rfr.

When noise of the general form [Eq. (65)] enters a linear detector, the
output, as explained in Chap. 2, will be linearly proportional to the
envelope of the r-f or carrier wave. That is, the output L(?) is given by

L) = v22(0) + y*(. (69)

Analogously, for a square-law detector the output Q(t) is proportional to
the square of the envelope, or

QM) = 2%(t) + ¥*(®. (70)

It will be important in these two cases to know what the probability
distributions and the spectra of the random functions L(¢) and Q(f) are.
The first two probability distributions follow, of course, from Eqs.
(68a) and (68b) by introducing polar coordinates and integrating over the
angles. One finds, for the first probability distributions,

1 Note in the expression for p(r) that the lower limit of the integral is — « in con-
trast to Eq. (22) or (58); p(r) is the same as the &(r) in our first example, since there
the spectrum of y(¢) was assumed to be normalized.
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l(L> £ e ZL:‘,
\/ (71a)
Wi(@) = P € Eﬁ: (71b)

Q—2a’.

(See Figs. 3-11 and 3-12; note that for the square-law detector the most
probable value of @ is zero whereas in the linear case the most probable

Wi N w(Q)

t

[

[ I

|| !

i I

LL L

La L L Q Q
Fic. 3-11.—First probability distribution Fia. 3-12.—First probability distribution
for the deflection; linear detector. for the deflection; square-law detector.

value of L is ¢.) The second probability distributions are more com-
plicated and less important. Only the result for the linear case is given,
namely,

WLy, Lyr) =

_L;’-‘l—L:2
LiL: g [ pL1L, )] (72)

et et S 20%(1—p?)

0 = 5 Moo -

where Io(z) is the Bessel function of order zero and imaginary argument.!
To find the spectra the correlation functions are computed. This

means, according to Eq. (62), that we have to calculate the integral (in the

square-law case)

Qi+ = /f/fdxldyldzzdyz (x} + ¥ (23 + v3)

Wz, zay2; 7).
This can be done quite simply.? We find
QR + ) = 40*(1 + p7). (73)
t Jo(z) = Jo(iz); one has made use in the derivation of Eq. (72) of the integral

2
Io(z) =§1;ﬁ)'doew-0.

* Note that W, according to Eq. (68b) can be considered as the product of two
independent two-dimensional Gaussian distributions in i, z; and ¥, ys. Using, for
instance, the general formula [Eq. (42)] for the calculations of average values, we
easily obtain

T =yl = o'l +260; T = Tl = et
from which Eq. (73) follows.
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For the linear detector the calculation is more involved. Only the fol-
lowing result is given here:

LUOLE + 7) = ¢f2E(p) — (1 — p?)K(p)]
_T o, pt et
_QU(1+Z+@+ ) (74)

where K and E are the complete elliptic integrals of the first and second
kind.

Finally the Fourier transform of Egs. (73) and (74) must be deter-
mined to obtain the spectra of Q(¢) and L(¢). Equations (73) and (74)
contain a constant term equal to (@)? and (I)?, respectively, and these

Galf)
- Area 4B°D?

I
|
|
|
1

8BD? -G, (f)

i D

t P — = —
i .

B R fo f
F1a. 3:13.—S8pectrum of the video noise hmweap detector.

terms, of course, will give the d-¢ terms [¢f. Eq. (24)]. The terms with
p? according to the convolution theorem of the Fourier transform, con-
tribute to the spectrum

— @

+ + =
/ o“pﬂ(T) CO8 27rf7' dr = /_ . dfl GV(fl)GV(f - fl) (75)

By applying the convolution theorem over and over again we can find
the contribution of the higher powers of p in Eq. (74) and in this way
express the spectrum of @(¢) and L(f) completely in terms of the original
spectrum Gv(f) of V(¢{). Fortunately the convergence of the series
[Eq. (74)] is so rapid that it is usually possible to stop with the term in p2.

The precise shape of the spectra depends, of course, on the shape of
Gv(f). Figures 3-13 and 3-14 give the results when Gv(f) is a square
band of height D and width B. These results represent the equations

Go(f) = 8B2D 3(f) + 8DXB — f),
Gulf) = 7BDo() + T (B~ )+ < -+ .

Besides the d-c peak there is a triangular continuous spectrum. For the

o
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square-law case this is exact; note that the width is B and that the height
at the origin is proportional to B; the area is

4B2D? = 402 = Q% — (Q)?,

as it should be. For the linear case, the triangle is only an approxi-
mation, though a very good one. The area of the triangle is

T _ ..
(s) BD = 0.39¢7;

the true area is, of course,

L — (L) = [2 - (g)] o? = 0.43¢2.

—Area TBD

G, (N

-Gy (1)

B~

oo oS
F1G. 3-14.—Spectrum of the video noise; square-law detector.

The height of the spectrum at the origin is (x/4)D and therefore inde-
pendent of the bandwidth! B; this remains true for the exact spectrum;
the height, however, is not (v/4)D but about 6 per cent greater. The
width of the triangle is again B, whereas the true spectrum also contains
higher frequencies than B, with, however, very small intensities.

! This was pointed out by J. R. Ragazzini, *“The Effect of Fluctuation Voltage
on the Linear Detector,” Proc. I.R.E., 30, 277 (1942).




CHAPTER 4
BASIC ORIGINS OF INTERNAL NOISE!

THERMAL NOISE

4.1, Statistical Derivation of the Thermal Noise Spectrum.—Suppose
one has a conductor of resistance R at temperature 7. Because of the
random motion of the electrons there will be small fluctuations of the
voltage across the ends of the conductor; the average value of the fluctua-
tions is, of course, zero. Nyquist? showed that the spectrum of these
voltage fluctuations is constant up to very high fre-
quencies’—so that for all practical purposes one can

consider it a white spectrum—and that the spectral
Fro 41— Two density is given by the formula

resistors at the same Gv(f) Af = 4RkT Af, (1)

temperature T'.

<

R, R,

where k is the Boltzmann constant.

The proofs of this fundamental result are all based on the general
principles of statistical mechanics and especially on the theorem of the
equipartition of energy. The proof of Nyquist is outlined first.

Consider two conductors with resistances R; and R, at the same
temperature 7' connected to each other (see Fig. 4-1). Suppose, further-
more, that the resistances are independent of frequency and that their
self-capacitances and self-inductances are negligibly small for all fre-
quencies that are of interest. Nyquist first observes that for any
frequency range Af the power transferred from R; to R, must be the
same as the power transferred back from R; to E;. This must be so
because by interposing a suitable ideal filter that will pass only fre-
quencies in the range Af one can ensure that currents of these frequenices
are the only ones that can exchange energy between the two resistors.
And since they are at the same temperature, the second law of thermody-

1 The authors will attempt no more than a summary of the main theoretical results
and of some of the experiments. The literature on the subject is very large, and the
authors feel that they may have overlooked some significant contribution. They
regret especially that space does not permit a more detailed account of the many
experimental investigations. For this and for the literature up to 1938, reference is
made especially to E. B. Moullin, Spontaneous Fluctuations of Voltage, Oxford, New
York, 1938.

* H. Nyquist, Phys. Rev., 82, 110 (1928).

$ For the discussion of this upper limit, see Sec. 4-5.

64
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pamics (which is, of course, a consequence of statistical mechanics)
requires that, on the average, no energy is transferred from the one resistor
to the other. Now the spontaneous voltage fluctuations across each of
the two resistors may be represented by the electromotive forces E, and
E;, whose average values are zero and whose spectral densities Gz, (f)
and Gg,(f) are still unknown functions of f. It follows then from simple
circuit theory that the average power transferred from R, to R; in the
frequency range Af is given by

GE:(f) Af (R + R )2’ (241)

and the average power transferred back from R, to R; is

Since these must be equal, one obtains
Ge(f)R2 = Ge(f) " 3

In particular, if Ry = R,, it is clear that the spectral density of the fluctu-
ating voltage must be a universal function of the resistance, temperature,
and frequency and that it must be independent of the nature of the two
resistors and of the mechanism of the conduction of electricity through
them.

To find the universal function, Nyquist imagines that the interchange
of energy between the two conductors! takes place by means of a lossless
transmission line of characteristic impedance R, so that both resistors are
matched. There is then no reflection at either end of the line; all power
emitted by one resistor is absorbed by the other, and vice versa. When
equilibrium has been established there will be present in the line electro-
magnetic energy of an amount?

%kTAf

m the frequency range Af. Here L is the length of the line and v the
velocity of propagation of the waves. This expression follows from the
fact that there are (2L/v) Af modes of vibration in the range Af and that
each mode, according to the equipartition law, has the energy k7T (namely,
kT electric and 3kT magnetic energy). The energy density in the
range Af is therefore (27 /v) Af; half of this is carried by waves going to
the right, and the energy that flows into the resistor on the right per
! Now supposed to have the same resistance R.

2 This is the one-dimensional form of the well-known Rayleigh-Jeans law of radir
tion theory.
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second is therefore v»(kT/v) Af = kT Af. This is the average power
transferred from one resistor to the other, which, on the other hand,
according to Egs. (2) (with R, = R,) is equal to Gz(f) Af/4R. By
equating these two expressions for the power transfer, one obtains Eq. (1).

4.2. The Gaussian Character of Thermal Noise.—One can also con-
nect the resistance R, possessing the fluctuating electromotive force E(t),
to an inductance or capacitance or, in general, to an
ideal network made up of inductances and capaci-
tances. By applying the equipartition theorem to
the electric or magnetic energy of the network one may
obtain another proof of the fundamental formula [Eq.
(1)]; this method can also be generalized so that one

Fia. 4-2.—Ther-
mal noise source . R
connected to a seli- can prove in addition that E(f) must be a Gaussian

inductance.
Inductance random process.!

The simplest method of procedure is to connect R to an inductance L
(Fig. 4-2). 'The circuit equation? is then

Lg—; + Ri = E(Y). @
If for t = 0 the current is 7o, then
R _B L
it) =i F Lo F ﬁ dt E(p)e* L. ®)
Since E = 0 (the averaging is now over an ensemble),
R
W) = de L.

The average current goes down exponentially. Squaring Eq. (5) and
taking the average gives

R R t t R
20 = ige‘zi’+%2e"2i‘ A ﬁ dt dne TV EDEG). (6)

We shall now assume that
E(5)E(m) = o%(E — ), M
where ¢? is an unknown constant. This assumption is, of course, equi-

1 In this form the theory of thermal noise in linear networks becomes mathe-
matically completely analogous to the theory of the Brownian motion of a system of
coupled harmonic oscillators; ¢f. for instance, Ming Chen Wang and G. E. Uhlenbeck,
“The Theory of the Brownian Motion, 11" Rev. Mod. Phys., 17, 323 (1945).

2 This is completely analogous to the equation of motion of a free particle in Brown-
ian motion. CY. especially G. E. Uhlenbeck and L. 8. Ornstein, ‘“The Theory of the
Brownian Motion, 1,"”” Phys. Rev., 36, 823, Sec. 2 (1930).
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valent to the assumption that the spectral density of E(t) is constant; in
fact, one can see that

Ge(f) = 4 /; dr cos 2rfrEQEU + 7) = 22 8)

If, in Eq. (6), we let £ + 9 = v, § — 7 = w, the double integral becomes

R R [T a? -2R,
573 ¢ L ﬁ) dv el /_m dwaﬂé(w)=m(l—e L);
so that

S a? o2 _ZIR,
() 2RL+(’L‘%‘—m>€ L, (9)

This equation shows that 72 starts from a value 2 and for { — « reaches
the constant value ¢2/2RL. On the other hand it is known from the
equipartition theorem that in the equilibrium state

Lt = $kT.

Therefore ¢? must be 2RkT; or according to Eq. (8), G=(f) = 4RkT.
Equation (9) shows in detail, then, how the equipartition value is reached.

Of course, one could have reached the conclusion ¢% = 2RkT more
directly by observing that as a consequence of Eq. (4) the spectral
density of the current is

_ G
G(f) = BT 2ngLF (10a)
With Eq. (8), this yields

7= /,, PG = 20 /w g (10b)
o YO o FFF 4rPLi ~ ORI

and ¢? is again determined by the equipartition theorem. It should be
pointed out that in this derivation the constancy of the spectral density
Ge(f) is assumed, whereas in Nyquist’s proof of Sec. 4-1 it is derived.
With our method, however, we can now go a step further. In the
equilibrium state we know not only that Li? = kT but also that the first
probability distribution W(¢) for the current must be the Maxwell-
Boltzmann distribution

. L -2
W) = \/%kTe 2T an
This is equivalent [see Eq. (3:7a)] to
T = (),
=135 (2~ 1) (@~
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The higher moments of 5(t) can be calculated from Eq. (5). If the fore-
going requirements are to be fulfilled as ¢t — =, it is necessary and suffi-
cient! that E(t) fulfill, besides Eq. (7), the relations

E@)EW) - - - Eltas) = 0; (12a)
EW)E(®:) - - - E(tu) = z EWE®) - E@)E®) - - -, (12b)
(all pairs)

where the sum has to be taken over all the different ways in which one
can divide the 2k time points ¢y, 2, . . . , fa, into k pairs.

It clearly follows from Eqs. (7) and (12) that E(f) is a Gaussian ran-
dom process with the constant spectral density 2¢% First, from Eq.
(12a) it follows that the average values of all the odd powers of the Fourier
coefficients of E(f) in the time interval 0,

2 2

<] -]
=g ﬁ dt cos 2efLE(Y), b = 5 L dt sin 2uft E(0),

are zero. Furthermore, from Eq. (12b)

3]
R 2n
a,f" = (g) / L /dtl L dtz,. cos Zﬂfkh *+ - COS 2‘l'fkt2,.
0
E(ty) -+ - E(ln)
[+
=1:3-5---2n—-1) [3—2 // dty dty cos 2xfity cos 2nfils
Q
F@Ew |
=135+ (2n— 1)@,
since there are 1 -3 . . . (2n — 1) ways in which ope can divide the 2n
time points £,  + * lz, into n pairs. The distribution function for the

a; is therefore Gaussian, and analogously one can show that the b's
have a Gaussian distribution and that the different ai’s and b/’s are
independent of each other; hence the complete distribution function

W(ay, as, . . . ;b by, . . . ) is given by Eq. (3-55), with
- 92
d=a==8= 5

This last fact follows from Eq. (7) and is equivalent to the statement that
the spectral density is 202 Af.

1 8ee G. E. Uhlenbeck and L. 8. Ornstein, op. cit., Note 1, for details of the proof.
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4-3. Kinetic Derivation of the Thermal Noise Spectrum.—Although
the fundamental result [Eq. (1)] is independent of the mechanism of the
conduction of electricity, it is of great interest to show how one can
obtain Eq. (1) from a definite model for the electric conduction through a
metal.!

Consider a piece of metal of length L and cross section §. We shall
assume the simplest possible picture of the electronic conduction through

i)

—
—] l l_t——>

F1a. 4:3.—Current as a function of the time for one electron.

the metal, the so-called ‘“Drude model.” All the electrons are inde-
pendent of each other, have the same speed », and have the constant
mean free path A, so that there is also a constant time r = \/v between
successive collisions. The velocity v is connected to the temperature 7'
by the equipartition theorem,

Jmv? = 3kT. as)

If we follow one electron in the course of time, then it is clear? that the
current produced will consist of blocks of height ev,/L and of width 7,
where v, is the component of the velocity along the metal (see Fig. 4-3).
The blocks will be assumed to be independent of each other, which
means that the v, before collision does not affect the probability of the v,
after collision. The average value of 7(t) is, of course, zero. Introducing
again a long periodicity interval © (cf. Sec. 3-7), one can develop #(f) in
the Fourier series

@

i) = z (ax cos 2nfit + by sin 2xfil).
k=0

1 This was performed by J. Bernamont, Ann. phys., 7, 71 (1937). The authors
follow essentially the simple proof given by D. A. Bell, J.I.E.E., 82, 522, (1938).
Cf. also S. Goudsmit and P. Weiss, RL Report No. 43-20 (1943). More refined
analyses have been attempted by C. J. Bakker and G. Heller, Physica, 6, 262 (1939),
and by E. Spenke, Wiss. Veriffentl. Siemens-Werken, 18, 54 (1939). In the opinion
of the authors, however, a completely satisfactory kinetic proof of Eq. (1), based on
the modern theory of metals, is still lacking.

2 Consider the metal to be in the shape of a ring. If the electron always had the
velocity v;, then the charge passing through any cross section per second would be e
divided by the time L/v, necessary to go around the conductor; the current would
therefore be ev, /L. After each time r, however, this value changes, since v, changes
at each collision of the electron with an ion.
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For all frequencies f that are small compared with 1/, we obtain for the
Fourier coeflicients

a = % /0 dt i(t) cos 2xfil = 2 z e;:" cos 2rfit;,

i=1

where the £;’s are n = (0/r) time points spaced = apart from each other.
We must now calculate the ensemble average of aj (a is, of course, zero,
since 9, = 0). We have

‘Z 2
ai eiU Z Z Vzlz; €08 2mfit; cos 2mfit;.

Because of independence assumption v.v., = 7,0.;, =0 when ¢ = j. On
the other hand 12 = §v? = kT/m because of the isotropy of the metal
and Eq. (13). We therefore obtain

— _ 4e*%T
ai = “mOTE z cos? 2xfit.
The sum can again be replaced by an integral, and it then becomes
apparent that the sum is equal to (8/r). Calculating b7 and a.b; in
the same way, we finally find

—~  2e%kT —

a; = b} = —’meL2} a;b, = 0.

This is also the mean-square value of the component of the current of
frequency fi, since

2 = af cos? 2ufit + bl sin? 2xfit = al.
Since in a frequency range Af there are © Af of such components and
since there are, say, N electrons that are completely independent of each
other, one obtains, for the spectral density of the total current,

G.(f) af = No af = 2RIV oy (14)

The value of the resistance for this model must now be calculated.
If an electric field F is applied along the metal, it is clear that between
two collisions each electron will gain eFr/m in velocity. The average
drift velocity will clearly be half of this, and the average current density
is therefore
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where n is the electron density. The electric conductivity ¢ is, therefore,
ent/2m, and the resistance

2
po L o_2mL _2mL

oQ  énrQ) Nt

Combining Fgs. (14) and (15) we find, for the spectral density of the
voltage,

(15)

Gv(f) = R*Gi(f) = 4RkT,

which is the formula of Nyquist.

I'rom the general statistical arguments of Secs. 4-1 and 4-2 it follows
that the result should be independent of the many special assumptions
we made. Some of these can be removed quite easily. For instance,
the successive blocks do not have to be independent of each other; the
whole sertes of blocks can always be divided into groups that are inde-
pendent and each group replaced by the average value of the blocks in
the group. It is more important and more difficult to take the velocity
distribution of the electrons into account. These questions will not be
gone into, since a quite satisfactory analysis has not yet been given. It
should be pointed out, however, that the velocity distribution (or, better,
the fluctuation of the total energy of the electrons) must be taken into
account, since on the basis of the Drude model it is not possible to prove
the Gaussian character of the thermal noise. For instance, to show that

o = 3@,

which is necessary when the a,’s have a Gaussian distribution, it is

necessary that . .
=365

which is not the case when the averages are taken over the different
directions of the constant speed v.

4.4, Generalizations. Theorems of Nyquist and Williams.—We have
seen that the voltage fluctuations across a resistance R at temperature 7'
can be accounted for by a fluctuating electromotive force E(f) of average
value zero and of constant spectral density 4RkT. Of course, we could

R . G (NDSf=
. R (noiseless) i . SR
(noisy) 4T i $(noiseless)
E(t) R

G (/)Df=4RKT DS
Fic. 4-4.—Equivalent representations of the noise in a resistor.
also have said that the voltage fluctuations are due to a fluctuating
current source of average value zero and of constant spectral density
4kT/R (see Fig. 4-4 where the equivalent representations are presented).
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In this section some generalizations of the theory given in Secs. 41 and
4-2 will be discussed. These generalizations are useful in practice and
further strengthen the representations made above.

1. Let us suppose that the resistance R is connected to a resonant
circuit (see Fig. 4-5). It will be shown that as a consequence of
Ge(f) = 4RkT, both the average magnetic energy $L2% and the
average electric energy Q%/2C are equal to $k7T, where Q is the

charge on the capacitor C. One finds [analogous to

Eq. (10
R q. (10a)]
sL#=2RLAT [ ° df )
By C Rz+<wL__16)
w

F1c. 4-5.—Ther- 1Q 2RkT [~ df
mal r;g:ise tsource 5 U = C N "

nn o a
ggrie:-cresonant cir- 0 w? I:R2 + (wL -— ZC') ]

cuit.

where w = 2nf. It is merely an exercise in integral calculus to
show that the right-hand sides are independent of R and both equal
to $kT.

2. One can generalize the above result to an arbitrary linear network
of n meshes. This may be of interest, since the way in which the
resistance dropped out of the expression for the total energy may
seem rather accidental. If associated with each resistance is a
noise emf, the circuit equations can be written!

d? d .
2( if dt:'{"l + Ru dytl + ‘Suyl) = z Eii; 1= 112, o, N, (16)

i=1 i=1
The term E;; is the fluctuating emf in that part of the resistance of
the 7th mesh which is not in common with any other mesh. The
term E;(z # j) is the fluctuating emf in the resistance R;. If in
R.; the positive directions chosen for the currents are in the same
direction, E;; = E;;; if they are opposite each other, then

E; = —Eji. The E; are again supposed to be Gaussian random
processes with a constant spectrum. We assume especially
lef. Eq. ()]

1 For the precise definition of the matrix elements L;;, R.;, S;;, see, for instance,
E. A. Guillemin, Communication Networks, Vol. 1, Wiley, New York, 1931, Chap. 4.
All these matrices are symmetrical. Note, however, that RB;; (¢ > j) does not need to
be positive. It is negative, when, in the resistance common to the sth and jth meshes,
the positive directions chosen for the currents are opposite each other. The y; are
the mesh charges.
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m = 0)
Fi(t)E{t:) = 2R:kT5(ty — t),
E;()E;(t) = 2|R4kTo(t2 — ),
E;&)Eu(t:) = 0.
The electric energy and the magnetic energy are given, respectively,

by the quadratic forms (the primes indicate differentiation with
respect to the time)

Uelec = ‘% z Srsyrysy

T,8

Um-zn = ‘é‘ z Lnyp,-y:-

7,8

an

To prove the equipartition theorem,! it must be shown

aa(.{f“=y:w;"‘"=k:f, r=12-",n (18)

dy,
To do this, one calculates from the circuit Egs. (16) for each
frequency f the stationary values of the mesh charges y; and of
the mesh currents y;. With Eq. (17), it is easily found, for instance,
that

Yr

f

asj;lw eryrys = — dw [SZ_I(W) Rz_l(_iw)]"’ (19)

where Z(p) is the matrix,

Z(p) = Lp*+ Rp + S, (20)
and L, R, and S are the inductance, resistance, and elastance
matrices.

To calculate the integral in Eq. (19), we observe that
Z(iw) — Z({—1iw) = 2iwR,

which follows from Eq. (20). Substituting this value of B in Eq.
(19), one obtains

U _ kT [T do o
Yy T T ). — I8Z7(iw)).,

where the principal value of the integral has to be taken. Use is

1 For this formulation of the equipartition theorem ¢f., for example, R. Tolman,
The Principles of Statistical Mechanics, Oxford, New York, 1938, Chap. 4, Sec. 35,
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now made of the well-known fact that the determinant of Z(iw)
has no zeros in the lower half of the complex w-plane.! The value
of the integral, taken around the closed path shown in Fig. 4-6, is
therefore zero. In the limit the integral along the large half circle
goes to zero; therefore the integral along the real axis must be
equal to minus the integral along the small half circle around the
origin. This latter, in turn, is equal to =7 times the residue of the
integrand at w = 0. Since Z-1(0) = S, it is clear that this
residue is unity, and therefore the value of y,(8Use./dy.) is merely
kT.

I3
X X
A A I
X X
— s e ® —8
Z(N=R()+iX(f) zZN=
(noisy) R(UN+iX(f)
" (noiseless)
I E()) G (NAf=
B B AR(NkTAS
F1g. 4-6.—Integration path.in Fra. 4.7.—Equivalent representations of the
the complex w-plane; crosses are noise in an arbitrary impedance.

zeros of Det (Z(iw)].

3. A Theorem of Nyquist. Suppose one has an arbitrary two-pole

linear passive network at temperature 7'; let the impedance between
the poles be Z = R + jX, where R and X are now, in general,
functions of the frequency f. Nyquist has shown that the spectral
density of the voltage fluctuations across the impedance is given by

Gv(f) Af = 4R(f)kT Af. (21)

This is clearly a generalization of Eq. (1). It can also be said that
one must associate with the impedance Z a fluctuating emf E(¢)
with average value zero and the spectral density given by Eq. (21).
Note that the spectrum of E(t) is no longer constant, so that suc-
cessive instantaneous values of E(f) will now be correlated.

The proof Nyquist gave for Eq. (21) is a generalization of the
considerations presented in Sec. 4-1. Suppose one connects the
impedance Z to a pure resistance R, which is also at the tempera-
ture T' and with which is associated the fluctuating emf E.(¢).
By equating the average power transferred from Z to R; in the
frequency range Af to the average power transferred back from
R, to Z, one finds, in exactly the same way as Eq. (3) was derived

in Sec. 4-1, )
G:(N)Er = Gu(HR(S). (22)

! This is an expression of the fact that we are dealing with a passive network,




e —m—— R

SEc. 4-4] GENERALIZATIONS 75

Since it is known that G (f) = 4R:kT, one immediately obtains
Eq. (21).

4. A Theorem of Williams. It must, of course, be possible to derive
Eq. (21) by associating with each of the constant resistances a
fluctuating emf having the constant spectrum of Eq. (1) [just as in
the general circuit equations (16)], and then calculating the com-
bined effect of all these fluctuating emf’s on the voltage across the
two poles of the network. This proof was given by Williams.?
It is of special value, because one can also predict what will happen
when the different resistances are no longer at the same temperature.

In this more general case it seems quite plausible still to associate
with each constant resistance R; a fluctuating emf E;(t) of average value
zero and of spectral density 4Rk T;, where T; is the temperature of the
resistance. In essence, this was first proposed by Ornstein? in his
studies of how cooling the resistance influences the sensitivity of gal-
vanometers. The first complete experimental confirmation of this
assumption® was first given by F. C. Williams, however.

Let Z.(f) be the transfer impedance between the resistance R; (tem-
perature T;) and the two poles A and B of the network. This means
that a sinusoidal emf E of frequency f in series with R; will produce a
current £/Z; in a link short-circuiting A and B. Williams shows that
the spectral density of the voltage fluctuations across AB is given by

Gi(f) Af = 4|27 af 2 % (230)
and that the real part of the impedance Z is given by
R;
R(f) = |2]? z i (23b)

Clearly, when all the temperatures T are the same, then Eq. (23a) reduces
to Nyquist’s result [Eq. (21)].

Finally it should be pointed out that in this way one can also see that
although the spectrum of the voltage across AB is no longer constant,
the voltage [or the emf E () in Fig. 4-7] is still a, Gaussian random process.
The reason for this is that the different fluctuating emf’s Z;(f) in the

1F. C. Williams, J.I.E.E., 81, 751 (1937).

2 L. 8. Ornstein, Z. Physik, 41, 848 (1927); L. 8. Ornstein, H. C. Burger, J. Taylor,
and W. Clarkson, Proc. Roy. Soc., 115, 391 (1927).

30One must call it an assumption, because no general statistical proof for this
extension of the original picture can be given. However, the kinetic proof makes the
assumption very plausible.
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resistances R; are Gaussian processes, which are independent of each
other, and that the connection between the voltage across AB and the
E:(t) is linear.

4-6. Experimental Confirmations. The Upper Limit of the Thermai
Noise Spectrum.—Many experimental investigations have confirmed the
basic Nyquist formula [Eq. (1)]. Besides the original
measurements of Johnson,! and those of Moullin and
Ellis,? the careful work of Wilbur?® should be men-
tioned. The voltage fluctuations across wire-wound
T T, 1 resistors up to about 2 megohms were amplified and
compared with the fluctuations due to pure ““shot”
noise, which are known to obey precisely the theoreti-

Fre. 48—Two Cal formula (see Sec. 46). In this way Wilbur could
resistors at different  verify rather precisely the linear dependence of Gv(f)
temperatures. on R and T (from liquid-air temperature to about
380°K), and his measurements can almost be considered as a precision
measurement of the Boltzmann constant k.

It has also been shown* that in metal resistors the voltage fluctuations
are independent, of whether a current is flowing through the resistance or
not. This cannot be predicted on the basis of the general statistical
theory of Secs. 4'1 and 42, since, with a current, the metallic electrons
are, of course, no longer in a state of equilibrium. On the basis of the
kinetic theory of Sec. 4-3 the independence of voltage fluctuations and
current flow becomes plausible, since the drift velocity of the electrons in
consequence of the outside constant emf is very small compared with the
thermal velocities of the electrons. In nonmetallic conductors, however,
the fluctuations usually increase when a current is passing through,
producing the so-called ‘‘current noise’’ (see Sec. 4-11).

The most detailed verification of Eqs. (21) and (23a) has been made
by Williams.® In one series of experiments the voltage fluctuations
across two parallel resistances R; and R. at temperatures T'; and T'; were
measured. Equation (23a) gives, for this case,

_ 4 RiRS (zl 1)
GO =+ rr\R TR

R, : T, R,
= 4RAT (Rl + Rz) (1 +, Rz)
1J. B. Johnson, Phys. Rev., 32, 97 (1028).
*E. B. Moullin and H. D. M. Ellis, J.I.E.E., 74, 331 (1934).
2D, A, Wilbur, “Thermal Agitation of Electricity in Conductors,” Dissertation,
U. of Mich., 1932.
+ Cf. E. B. Moullin, Spontaneous Fluctuations of Voltage, Oxford, New York, 1938,

Chap. 1.
8F. C. Williams, J.I.E.E., 81, 751 (1937).
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The temperature T, was varied from 20° to 470°C, while R, remained at
room temperature. The linear dependence of Gv(f) on T3/T, and the
absolute value of Gv(f) were well established.

In a second series a capacitance and an inductance were introduced in
the two branches (see Fig. 4-9). In this case Eq. (23a) becomes

B I R RaTs
, Gv(f) = 4]Z|% [Rf F o2 + R + (1/(‘)0)2]'

Again the temperature 7' could be varied and the measurements could
be made at three different frequencies f. The results again confirmed the
theory.
Finally, R1, R,, and L were kept at room tempera-
ture, and the voltage fluctuations across A B were meas-
ured as a function of the temperature of the condenser. c
The value of Gv(f) did not change, confirming the
picture that the fluctuating emf’s must be associated B, R,
only with the resistances. h T2
This section is concluded with a discussion of the
upper limit of the thermal notse spectrum. 1t is clear B
that the Nyquist formula must break down at some  Fiec. 49.—Two
| * high frequency fo 'and that Gv(f) must then go to }'e';gff’:zﬁ;er:tufe’:
zero. Otherwise (in the argument of Sec. 4-1) the
| total power transferred from one resistance to the other would be infinite.
Various statements have been made in the literature about the value of
fo; they lead to several questions and difficulties, to be discussed briefly.

1. Nyquist pointed out that in his derivation (see Sec. 4-1) for very
high frequencies one should replace the equipartition value k7T for
the energy of each of the modes of the transmission line by the
Planck formula

kf
I =1
~This would lead to
h
The spectrum would, therefore, vanish at a frequency of the order
of
fo ~ kTT —2:1X 10°T cps, (25)

and the total voltage fluctuation across the resistance R would be

- N 2r?RE2T?
2 = = ——
14 [, 4 Gy(f) = =5
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On the other hand, from the kinetic proof given in Sec. 4-3, the
noise spectrum must be expected to drop to zero at a frequency of
the order of

1 _»

Jo= S 101 to 1014 cps, (26)

and this has been corroborated by Bakker and Heller.! Both
limits [Eqgs. (25) and (26)] are, of course, much too high to be of any
practical significance. However, the question still remains:
Which is the correct limit? The essential difference between Egs.
(25) and (26) is that Eq. (25) is universal whereas Eq. (26) would,
in principle, give different limits for different metals.

2. One might think that the transmission line (or waveguide) proof
of Nyquist shows that the limit must be universal, since otherwise
there would be a conflict with thermodynamiecs. The authors
believe this is not so. Essential in Nyquist’s proof is the assump-
tion that the conductors have a constant resistance, independent of
frequency. At high frequencies this will certainly no longer be
true, and the dependence on frequency will be different for different
conductors. The proof of Sec. 41 breaks down at very high
frequencies because the conductors will no longer match the line,
so that reflections will have to be taken into account.

3. The general argument of Nyquist leading to Eq. (21) makes it very
plausible that one always will find

Gv(f) = 4R()KT. @7)

It seems, however, that the function R(f) will usually not be
determined by the nature of the resistor [a supposition that would
lead to the limit expressed by Eq. (26)] but by the shape of the
resistor, since this will determine its self-capacitance and self-
inductance. Only when these are completely negligible will the
limit given by Eq. (26) begin to play a réle.

4. Tt is clear that at these high frequencies it is no longer permissible
to consider only networks with lumped constants. The general
statistical theory should be generalized, using the Maxwell equa-
tions, to an arbitrary system of bodies in equilibrium with the
radiation field. Such an investigation would clarify the precise
meaning of Eq. (27) and would then presumably also determine the
function B(f). It would also be of interest to see if a more general
kinetic investigation would justify Eq. (27).

5. A difficulty of Eq. (27) is that with a frequency-dependent resist-
ance, the proofs of the equipartition theorem given in Secs. 4-2 and

1 Physica, 6, 262 (1939).
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4+4 break down. This difficulty is, however, only apparent, since
the impedance of the conductor must now necessarily also have a
complex part. Thus in the simple case of Sec. 4-2 (Fig. 4-2) the
magnetic energy of the circuit will not be ¢LzZ for the resistance R
also will carry some magnetic and electric energy. That we shall
again arrive at the equipartition law can be shown only by the
more general statistical investigation mentioned above.

NOISE DUE TO DISCRETENESS OF THE ELECTRONIC CHARGE

4.6. Derivation of the Schottky Formula.—Let us consider a tempera-
turelimited diode connected to a resistance R.
Because of discreteness of the electronic charge,
the number of electrons emitted in equal time
intervals will fluctuate around an average value.
As a result of this fluctuating current the voltage
across the resistance will fluctuate too, and these
fluctuations can be amplified and measured.
This is the well known shot effect, first predicted
and treated theoretically by Schottky. He ]
showed that the spectral density of the current F"’,‘lec;’;'},“t';?;i‘;?; e
is constant up to frequencies of the order of the
reciprocal of the transit time and that the spectral density (for the fem-
perature-limited case) is given by the formula

G:(f) &f = 2l 4, (28)

where ¢ is the electronic charge and 7 is the average current.

Since the electrons may be taken as independent in the temperature-
limited case, it is clear that the current through the resistance will consist
of a series of short pulses, each pulse cor-
responding to the passage of an electron
from cathode to anode. The current
will therefore have the form

fe-t)

&
d

. t+7  Time—

10 = Z -, (29)

F1c. 4-11.—Current pulse corre- .
sponding to the passage of one where the ¢'s are the random and in-

electron. dependent emission times of the suc-
cessive electrons, and where f(¢) is almost like a Dirac é-function (since
the transit time 7 is very short) with area equal to the electronic charge e
(see Fig. 4-11).' Introducing a long periodicity interval 8, I(t) — I can
be developed in the Fourier series

! The statistical properties of sums of the type in Eq. (29) have often been investi-
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I -1I= z (ax cos 2xfit + by sin 2xfit).
k=0
For frequencies fi large compared with 1/r, we obtain
2

ax = =

N
8 /‘0 dt (T(t) — I} cos 2nfit = %z cos 2xfil;, (30;
0

i=1
where N is the total number of electrons passing from cathode to anode
in the time ©; N may be considered constant. The averaging has to be
done over the random time points ¢, for which a uniform distribution law
is assumed. It is clear that

cos 2xfil; = sin 2xfit; = 0,
€08 2xfil; cos 2nfil; = sin 2xfif; sin 2xfit; = §6;,
" 08 Znfil; sin 2xfit; = 0;

therefore _
a;,=b;,=0,
= e? 1 2¢e’n
d-B-GmN=-T ah=0

where n = N/O is the average number of electrons passing per second.
The average current I is therefore en, and we can write, for the mean
square value of the component of the current of frequency fi,
2 = af cos? 2rfit + bf sin? 2nfit = 2;—1-

Since in the frequency range Af there are © Af of such components,
multiplication by this number yields the results given in Eq. (28).

To prove that I(t) is a Gaussian random process requires a rather
detailed investigation. It is clear that the mean values of all the odd
powers of a; and b; vanish. Furthermore,

4
a = (%) z oS 2nfit; cos 2xfil; COS 2mfxls COS 2 xtm

(3]
ilm

= (%e)4 [3 (2 cos? Z;rf,,t.-)2 -3 Z (cos? 2xfil;)?
all all's

— 1 _ (26\*(3 3. .3
+ 2008421'fkt,‘] = (6) (ZNZ - ‘IN+ §N)
all ¢

wated. Cf. 8. O. Rice, “Mathematical Analysis of Random Noise,” Bell System Tech».
J., 23, 282 (1944), Part I; see also for further references. For the most complete
and exact treatment see H. Hurwitz and M. Kae, ‘“Statistical Analysis of Certair
Types of Random Functions,” Ann. Math. Statist., 15, 173 (1944).
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Since N can be chosen arbitrarily large, one might be inclined to conclude
that the terms linear in N can be neglected; this would lead to

— 2N\ -
ai =3 (—2662]\7 ) = 3(a})%

In the same way the mean values of all the even powers of a; could be
calculated; and keeping only the highest power of ¥, we should get
" =1-3-5---(2m — 1) (@)=,

which is characteristic for the Gaussian distribution. The next question
is whether or not the different Fourier coefficients are independent of each
other. Here one gets into trouble. It can be shown that the coefficients
ai, as, . . . , 4, can be considered as independent (in the limit N — o)
if, and only if, s/N approaches zero as N approaches infinity. If we let
only O approach infinity (keeping n = N/O fixed), we shall have inde-
pendence only providing s is small compared with 6. Thus independence
of coefficients is obtained solely over narrow portions of the frequency
range. To get a Gaussian process, where all the Fourier coefficients are
independent, not only must N approach infinity (which can always be
achieved by taking © large enough) but so must n also. The essential
condition for the Gaussian nature of the shot noise is that the average
number of electrons passing per second be very large. This conclusion
is confirmed by an analysis of the distribution of I(¢) itself. Assuming,
as before, that the time points ¢; are distributed uniformly over the time
interval ©, we obtain

N
= [%dt [®dt, © dty
I—ﬁgﬁg Y fit —t)
i=1

N [t"
=§ dff(f)-

Strictly speaking, we should still average over all possible values of N
according to the Poisson distribution!

( N)Ne—-l\_l

NT
with N = n0, where n is the average number of electrons passing per
second. We then get

W(N) =

+ =
T=n [ aso. (31)
t When N is large, W(N) can be approximated by a Gaussian distribution around N
and with a variance equal to N; hence for large N the variation of N may be neglected.
The formulas become simpler, however, by taking the variation of N into account.
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In the same way we get

7o g’/f: at e + YO 1) [/j d”(f)]z

= [ Carw | [T anw],

and it follows that N
I-I2= n/ dag f1(§). (32)

To find the distribution of 7 — I it is best to calculate the characteristic
function

¥(u) = exp [iu(l — I)],
for which we obtain

¥(u) = exp [—iun /_+ ) &) de+n /_+ ) dE (e ® — 1)]- (33a)

This is still exact. . For large n we may develop the exponent in powers of
u, leading to N
¥(u) ~ exp [—nu’ / dEP(E)]; (33b)
consequently (for large ») the distribution of I — I will be Gaussian with
the variance given by Eq. (32). By a calculation similar to that given
in Sec. 36, it can be shown that the error will be
I 4 of the order of magnitude of 1/n%.

R Experimentally, the Schottky formula [Eq.
(28)] has been verified many times. In the

TC original experiments of Hull and Williams? the

L current of a temperature-limited diode was

| p DPassed through a lightly damped resonant cir-

* ] cuit, £nd the fluctuation of the voltage between

Fio. f(;lfe's_ogftdgifgﬁfcmd the poles A and B was measured (see Fig. 4-12).

To calculate this fluctuation from Eq. (28), the

diode must be considered as a fluctuating current source. The spectral
density of the voltage is therefore, in general,

Gv(f) = |Z()|*G(f) = 2¢I|Z(j0)|?, (34)
when Z is the impedance between the poles 4 and B. We therefore get
2el R2? + L%w?
Gv(f) = 2t @ N
R? + <Lw - —)
Cow

1A. W. Hull and N. H. Williams, “Determination of Elementary Charge E from
Measurements of Shot-effect,” Phys. Rev., 26, 147 (1925).
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which gives for the fluctuation of the voltage

V=7 = [ wren = g (14 )

In subsequent experiments by Williams and collaborators the current of
the diode was passed through a resistance R (see Fig. 4-10), and the
voltage fluctuations, whose spectral density for this case is simply 2¢/R?,
were measured by a highly selective amplifier. The best results are
probably those obtained by Williams and Huxford.! They can be
considered as almost precision
measurements of the electronic
charge e.

4.7. Space Charge Depression
of the Shot Noise.—When the
current through the diode is not
temperature limited, the electrons (
cease to be independent, and the Retarding ! Space-charge
Schottky formula [Eq. (28)] breaks field region | limited region i
down. Many experimental and Fia. 4-13.—Currel(11ti;azl.tage relation for a
theoretical investigations? have
been devoted to the question of how the Schottky formula should be mod-
ified. One can say that this problem has now, except for the h-f region
(see Sec. 4:8), been solved. The theory is complicated, however; only a
short account of the main results will be attempted here.

It is necessary to recall, first, the well-known theory for the current-
voltage characteristic of a diode.® For a given temperature of the
cathode and for a given geometry, the characteristic has three distinct
regions (see Fig. 4-13). When the voltage of the anode is sufficiently
negative, the potential distribution between cathode and anode will be a
monotonic decreasing function; the electrons will therefore always be in
a retarding field. The current is extremely small and is produced only
by those electrons which are emitted with such high velocities that they
can overcome the retarding field and reach the anode. All other electrons
will return to the cathode. As a result of the Maxwell distribution in

|4

Temperature

I
I
|
|
i
|
|
]
J.
i limited region

IN, H. Williams and W. 8. Huxford, “Determination of the Charge of Positive
Thermions from Measurements of Shot Effect,” Phys. Rev., 83, 773 (1929).

2 Cf. E. B. Moullin, Spontaneous Fluctuations of Voltage, Chaps. 3 and 4, Oxford,
New York, 1938. The theory was developed independently by D. O. North, “Flue-
tuations in Space-charge-limited Currents at Moderately High Frequencies, Part 11,
Diodes and Negative-grid Triodes,” RCA Rev., 4, 441 (1940); W. Schottky and E.
Spenke, Wiss. Veriffentl. Siemens-Werken, 16 (No. 2), 1, 19 (1937); A. J. Rack,
“Effect of Space Charge and Transit Time on the Shot Noise in Diodes,” Bell System
Techn. J., 17, 592 (1938).

3 Cf., for example, I. Langmuir, Phys. Eev., 21, 419 (1923).
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velocity, the relation between the current and voltage in the retarded-
field region is given by
I = I..ev7r, (35)

When the voltage of the anode increases the space-charge-limited region
is reached ; here there is a minémum in the potential distribution between
cathode and anode. Therefore part of the field is retarding and part
accelerating. The relation between I and V is in this case complicated
and cannot be presented in a closed form. Increasing the anode voltage
shifts the minimum toward the cathode. For high enough voltage the
minimum will finally disappear, leaving only an accelerating field; one is
then in the temperature-limited region. In this case the current is
constant and equal to the saturation current f.:.

The Schottky formula [Eq. (28)] is valid only in the temperature-
o limited region; then the density of the voltage

fluctuations across an external resistance R (see

Fig. 4-10) is consequently given by

G (f) Af = 2el.R2 Af. (36)

- o For the other regions of the characteristic, the first
Fie. 414—Equiva-  gyestion that has to be considered is the part

lent circuit for a diode i . .

connected to a noiseless ~played by the differential resistance p = dV/dI of

resistor K. the diode. It seems plausible and can also be

strictly justified that the diode must always be considered as a fluctuating

current source impressed on the resistances p and R in parallel (see Fig.

4-14). Equation (36) is therefore generalized as follows:

I » R

Go(f) Af = 2IT* (RR: ,,)2 Af, (37)

where T is a dimensionless quantity, which may still depend on the
current I. For dimensional reasons, I' must have the form

_ epl
T'=F (m)) (38)

where T is the cathode temperature. The resistance p is, of course, also
a function of 7, which can be determined from the characteristic. In the
temperature-limited region p = o, I' = 1, and I = L., so that Eq. (37)
goes over into Eq. (36). Moullin' has shown experimentally that Eq.
(37) gives the correct dependence on the resistance R. The point of view
that the diode may always be considered as a fluctuating current source

1 E. B. Moullin, ““Measurement of Shot Voltage Used to Deduce the Magnitude of
Secordary Thermionic Emission,” Proc. Roy. Soc., 14T, 109 (1934).
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has also been confirmed by a series of interesting experiments by Williams. !
Williams took into account the thermal noise of the resistance R, which
he represented by a fluctuating emf E(f) in series with the resistance R.
For the voltage fluctuations across AB (see Fig. 4-15), we find

e = (i) GUf) + i Oa()
R+ p (B + p)?
2
= (RI?: p) (23[1‘2 + MCTT); (39)

using Eq. (837) and the Nyquist formula; 7 is the temperature of the
resistance E. The dependence on R and on s
T was checked in detail. 4

There remains the problem of calculating the 20
function I The procedure may be roughly ex-
plained as follows: Just as in the temperature- @1 o P §
limited case, it can be assumed here that the R
electrons emitted by the cathode emerge inde-
pendent of each other and completely random in D,
time. Theaverage number v emitted per second Fie. 4-15.—Equivalent

. . . circuit for a diode connected
determines I... Let ussuppose that in a time (', oise resistor R,

Al, which is short compared with the period

1/f, more electrons than the average number v At are emitted by the cath-
ode, and let the excess be An.  Because of the existence of a potential mini-
mum, the number of electrons delivered at the anode in a time of the order
of the transit time r (which is also supposed to be small compared with 1/f)
will not exceed the average number by the same amount An. The excess
will be less, because the An electrons will have somewhat lowered the
potential minimum and will have thus prevented other electrons from
reaching the anode. In the same way when fewer electrons than the
average number » A¢ are emitted by the cathode, the raising of the
potential minimum will diminish this defect at the anode. The fluctua-
tions will consequently be cut down, and one must therefore expect T
to be less than unity.

For the precise calculation the velocity distribution of the emitted
electrons should of course be taken into account, since the effect on the
potential minimum will depend strongly on the velocity of the group of
electrons under consideration. Furthermore, one must distinguish
between the reflected electrons (or electrons of Class «), which have insuffi-
cient energy to cross the potential minimum, and the transmitted electrons
(or electrons of Class 8), which are the only ones contributing to the

1F. C. Williams, “Fluctuation Voltage in Diodes and in Multi-electrode Valves,”
J.I.E.E., 79, 349 (1936). Cf. also Moullin, op. ¢it., p. 74.
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plate current. One finds that
[? = T,2? 4 I (40)

For the usual operating conditions, T',? << I's?; hence the effect of the
reflected electrons can often be neglected (¢f. Table 4-1). The calcula-

TaBLE 4-1.—VALUES oF THE REpuctioN Factor I

V — Vain el T.
™ = e( .. ) x = kql': T2 Tg? [T = T4t + I'g? T 6= T:f
0 1 0 1 1 1 0.500
5 6.76 0.0282 | 0.1663 0.1945 0.441 0.66
10 10.96 0.0167 | 0.1043 0.1210 0.348 0.66
15 14.9 0.0115 | 0.0775 0.0890 0.298 0.66
20 18.7 0.0086 | 0.0621 0.0707 0.266 0.66
25 22.5 0.0068 | 0.0519 0.0587 0.242 0.66
30 26.3 0.0056 | 0.0448 0.0504 0.224 0.66
35 29.9 0.0047 | 0.0394 0.0441 0.210 0.66
40 33.7 ¢.0040 | 0.0352 0.0392 0.198 0.66
45 37.3 0.0035 | 0.0319 0.0354 0.188 0.66
50 40.9 0.0031 | 0.0291 0.0322 0.179 0.655
60 48.0 0.0025 | 0.0248 0.0273 0.165 0.655
70 55.3 0.0020 | 0.0217 0.0237 0.154 0.65
80 62.2 0.0017 | 0.0192 0.0209 0.145 0.65
90 69.6 0.0015 | 0.0173 0.0188 0.137 0.65
100 76.4 0.0013 | 0.0157 0.0170 0.130 0.65
tions are complicated and involve a great deal of numerical computation.?
1 r The most complete calculations
05 3 44 =10 | are those carried out by E.
2 I | N
02 [~~~ | 4]=100 Spenke. Some of his results are
T NN shown in Fig. 4-16. Only plane
01 . .

" diodes were considered; the ge-
€05 A=lo ometry and operating conditions
0.02 are characterized by the dimen-
001 ionl i

I 2 510 20 50100200 500 lopp S -OTIESS quantity
(V-V} 3
kTe A =4 —"—) m¥ (elme)¥d
F1a. 4-16.—Reduction factor I' as a func- (2ch ( t)
tion of the potential difference between the 1000 3%
piate and the potential minimum: = 0.505 X 104 ( ) I-;"“d,
4 =4 )%m%(el,,.;)%d. T
2kT. (41)

where I.. is in amperes per square centimeter and the cathode-anode
distance d is in centimeters. Usually A will be a large number. One

1 In the theory the effect of the excess or defect in the number of emitted electrons
n the position and magnitude of the potential minimum is calculated on the basis of
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sees from Fig. 4-16 that for different values of A, T as a function of the
plate voltage follows the curve for A = « and then rapidly rises to the
value unity when the temperature-limited region is reached. For most
purposes A can be taken infinite. For this case the values of T are
tabulated in Table 4-1 and shown in Fig. 4:17, both taken from North's

1.0 100
| )4

038 / 80

/ Teff TC
= A L A < S VS
506 V.4 i i i
e \\ 30-3) .
I—F "‘77 2

g 0.4 \x v4 2 3\/1._%r 40
~ ~ “\‘\‘/ \/7’2

02 e 20

0 0
0 20 40 x 60 80 100

Fi1G. 4-17—Reduction factor T, 72 = &(V — Vmin! /kT., and Tei/7. as a function o
x = elp/kT,. Dotted lines show the asymptotic behavior. The quantity 4 (see Iig.
4-16) is taken infinite.

paper. In addition to I' and T'? one finds in this table T2 and T's® as a
function of the potential difference between the plate and the potential
minimum and as a function of the perhaps more significant quanticy

~epl 1000 R

where T is in degrees Kelvin, p in ohms, and 7 in amperes. Strictly
speaking the results of the table can be used only when the current is
small compared with the satuiation current, although from Fig. 4-16 it
can be seen that the results remain valid practically up to the saturation
point. It can further be shown that for large values of 7,?

the continuum theory of the space-charge cloud. This is really what makes the
calculations possible at all, since the equations of the Epstein-Langmuir theory can
then be used. The method is justified because the fluctuations in emission are small
and because the interaction of an electron with its immediate neighbors is always small
compared with its interaction with the more distant electrons, which may be described
by a continuous charge-density function.

2 A simplified proof for this asymptotic behavior of T, based on the assumption
that for large n, only the transmitted electrons need be considered, is attempted by
C. J. Bakker, Physica, 8, 23 (1941).
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3.1-1
Ve

X = §na

These asymptotic formulas can be given an interesting interpretation
in terms of a pseudothermal voltage fluctuation across the diode resist-
ance p. Equations (37) and (39) for the voltage fluctuations across a
resistance R may be interpreted in terms of a fluctuating emf E,(f) in
series with the resistance p if one assumes that the spectral density of
E\(?) is given by

Gz (f) Af = 2eIT?p® Af. (44a)

£

Comparing this with the Nyquist formula, an
T« can be introduced by means of the equation,

Ge(f) Af = 4kTuap A, (44b)

effective”’ temperature

and
_ Ten _ CIp 9 1 2

The temperature Ter will of course depend on the current; from Eq. (43)

it follows that, for large x, T2 = 6 (1 — £>/x; hence

T ]
6 = T, = 3 (1 - Z) = 0.644. (46)
It is surprising that for smaller currents # remains near this value (see
Table 4-1); hence for all practical purposes one can consider the diode in the
space-charge region as a reststance p at a temperature that is about two-thirds
of the cathode temperature.

This result breaks down, of course, in the *emperature-limited region,
where one has the normal shot effect. It also breaks down in the
retarded-field region. In this region there is no potential minimum;
hence it must be expected that I'? = 1. On the other hand from the
current-voltage relation, [Eq. (35)] it follows that

_dV _ kT
P=7GT = eI’

hence x = epl /kT; = 1. From Eq. (45) it follows therefore that in the
retarded-field region
Tsﬂ = %T: (4:7)

This simple result, which has been checked experimentally by Pearson
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and by Williams,! can also be understood by the following simple argu-
ment of Schottky.? Suppose one has two identical diodes, of which the
anodes are made of a poorly emitting substance but the cathodes are
strong electron emitters. Let the diodes be arranged in parallel, and
let the whole system be at the same temperature 7.. There will then be
a potential difference between the cathodes and anodes, but the total
current will be zero. In each diode the current from cathode to anode,
which is in the retarded-field region, is balanced by the small but tem-
perature-limited current from anode to cathode. According to the
Nyquist formula, the voltage fluctuations across each diode must be
4kT.p. These fluctuations are produced by the normal shot-effect
fluctuations of the cathode-anode and the anode-cathode currents.
Therefore each of these currents must contribute half of the total fluctua-
tion. Since the differential resistance p is due only to the cathode-anode
current, the anode-cathode current being temperature-limited, it is
clear that in the retarded-field region the normal shot-effect fluctuations
must be equivalent to thermal fluctuations at a temperature that is half
of the cathode temperature.

4-8. Experimental Confirmations; the Upper Limit of the Shot-noise
Spectrum.—North and Jacoby and Kirchgeszner® have compared the
theoretical results presented in Sec. 4-7 with experiment. For diodes,*
qualitative agreement has been found with regard to the dependence of
I' on 73 = ¢(V — Vain)/kT.. The measured values of I' are, however,
always higher than the theoretical values. North has made it plausible
that this discrepancy is due to the effect of electrons that are reflected
elastically by the anode. Such electrons can return to the region of
minimum potential and thus influence drastically the passage of other
electrons.

Much better results are obtained for negative-grid triedes. The basic
formula [Eq. (37)] must first be adapted to this case.® This can be done
by introducing the familiar concept of the equivalent diode. The anode
potential of the diode must be interpreted as the ‘“effective’” potential E,
of the grid plane, that is, that potential which, when applied to a solid
sheet in the grid plane, would draw the same current. The voltage E,
is related to the actual grid and plate potentials E, and E, by

1 G. L. Pearson, Physics, 6, 6 (1935); F. C. Williams, J.I.LE.E., 79, 349 (1936).

* W. Schottky, Z. f. Physik., 104, 248 (1937).

3D. O. North, “Fluctuations in Space-charge-limited Currents at Moderately
High Frequencies, Part II, Diodes and Negative-grid Triodes,” RCA Rev., 4, 441
(1940); H. Jacoby and L. Kirchgeszenr, Wiss. Veriffentl. Siemens-Werken, 18, No. 2,
42 (1937).

4 Or for triodes when operated as a diode, that is, when grid and anode are con-

nected.
8 Cf. North, op. cit., p. 468.
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E.=o (E + %E,,) (48)

where ¢ and p (the amplification factor) can, in principle, be calculated
from the geometry of the tube. The factor ¢ lies between 0.5 and 1 and
usually is nearly 1. The plate current is a function of E,, and hence the
conductance of the equivalent diode is given by

1 dl, _1{ol,\ _ gm
» 97 4E, " & (aEg)Ep T (49)
when g, is the mutual conductance of the triode. Using Eqs. (44a),

45), and (49), one obtains for the voltage fluctuations across a resistance
R in the plate circuit the formula

2
09 o = Yrrg, (2 7) & (50)
which replaces Eq. (37); r, is the plate resistance, which is related to g.
and p by the well-known relation
u
Tp Im (51)
Equation (50), with # = 0.66, has been thoroughly confirmed.!

In all results obtained so far the frequency f is supposed to be small
compared with the reciprocal of the transit time 7 of the electrons. All
the spectral densities are then independent of the frequency. It is clear
that this will cease to be valid when the frequency becomes comparable
with 1/7. In the temperature-limited case it is easy to see what will
happen. In the Fourier analyses of the series of random current pulses
(see Fig. 4-11) the shape of the pulses must now be taken into account.
Taking the shape, for the sake of simplicity, as a rectangular block of
height ev/d and width r = d/», one gets, instead of Eq. (30),

_ 2esin wfyr T
% =g e z cos 2xf; (t,- + §>-

1

As a result, the spectral density of the current fluctuations becomes

Gi(f) Af = 2eI <Si‘; f’:fT)Z of, (52)

which, of course, goes over into the Schottky formula [Eq. (28)] when

LCf. ibid. Since the effect of the electrons in the grid-plate space on the space-
charge reduction factor I'? (or on the effective temperature 7. of the cathode-grid
region), has been neglected, Eq. (50) can be expected to hold only for Aigh-u tubes.
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f <« 1/r. For higher frequencies G;(f) is always less than the Schottky
value; and for f > 1/7, G:(f) goes to zero. Spenke! has refined this rough
calculation by taking into account the velocity distribution of the emitted
electrons and the acceleration of the electrons between cathode and anode.
Instead of Eq. (52), one then gets a completely monotonic decreasing
function of f.

In the space-charge-limited region the problem is much more difficult.
Rack? has given an analysis in which only the effect of the transmitted
electrons was taken into account. He obtained for the spectral density
the expression

Ge(f) Af = 12 <1 - g) kT.pS(6) Af, (53q)
where
8(8) = % (2 + 62 — 2 cos 8§ — 26 sin 6) (53b)

and 6 = 2xfr is the transit angle. Equation (53a) is supposed to be a
refinement of Eq. (44e) with the value given in Eq. (46) for the effective
temperature of the cathode.?* The function S(6) is a monotonic decreas-
ing function of 8, starting from unity for small 8 and going to zero for
large 6. The space-charge reduction of the fluctuations would therefore
persist at high frequencies. It is doubtful, however, if this result is
correct. Spenke* has shown that in the retarded-field region, values for
T'? can be obtained which are much larger than unity when the frequency
is of the order of magnitude of 2/7. The reason for this increase is that
the reflected electrons then begin to contribute strongly to the fluctua-
tions. It seems probable therefore that at high frequencies the effect of
the reflected electrons cannot be neglected, and it may be that I'? rises
with increasing frequency and goes through a maximum before going to
zero for very high values of f. Further theoretical investigations
and experimental information, which we do not now have, are required
with regard to this question.

4.9, Partition Noise.—In tubes that have more than one collecting
electrode (tetrodes or pentodes) the random nature of the partition of the
total current over the different electrodes provides an additional cause of
fluctuations in current. The mean currents to the anode and to the
screen grid are determined essentially by the ratio of the free area of

2. Spenke, Wiss. Veriffentl. Siemens-Werken, 16, No. 3, 127 (1937).
2 A. J. Rack, “Effect of Space Charge and Transit Time on the Shot Noise in
Diodes,” Bell System Techn. J., 17, 592 (1938).
3 The p in Eq. (563) is the diode resistance at low frequency and is therefore inde-
pendent of f.
1 0p. cit, 17, No. 3, 85 (1938).
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the grid to its total area; the discrete nature of the electronic charge will
give rise to fluctuations around these mean values.

Let us consider first the temperature-limited case. Since the electrons
are completely independent of each other, and since the capture of an
electron by the grid is a matter of pure chance, the times of arrival of the
electrons at the anode will still be entirely random, just as for the diode
in the temperature-limited case. The sole effect of the screen grid will
be to diminish the average anode current. The density of the anode-
current fluctuations will therefore be given by the Schottky formula

Gr.(f) Af = 2el, Af, (54)

where I, is the average anode current.

Let us imagine, on the other hand, the case where the electrons would
be emitted by the cathode with absolute regularity in time, the time
intervals between successive electrons being constant as a result. In a
diode there would then be no current fluctuations at all; in other words,
the shot fluctuations would have been completely suppressed. For
s multicollector tube, however, the random nature of the capture of
electrons by the grid would produce random gaps in the regular series of
current pulses arriving at the anode; hence, there would again be some
fluctuations in the current. What the spectrum will be is easily seen.
Developing the anode current in a Fourier series in the usual fashion,

I, = z (ax cos 2nfit + b, sin 2xfut),
&

2 [® 2
@ =5 . at I,(t) = 5 e; o8 2xfit;.

we obtain

The time points ¢; are now supposed to be spaced regularly with the
constant interval A. The random variables are the charges e;, which can
have only two values, namely, e and zero with the probabilities p and
1 — p. Therefore,

€ = pe ee; = e e; = pe?,
22 — 2
€; = pe’,
and we get

al = Géz Z 2 e:¢; cos 2mfit; cos 2mfil;
i J

2
= gz [P2€2 <z cos 27rfkti> + p(1 — p)e? 2 cos? 2kf,,t]-
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Or, again replacing the sums by integrals,

— 2
3 — “ — 2

ak OA p(l p)e .

Since A represents the spacing between successive electrons, it is clear

that e/A is the sum of the average anode and grid current and that

pe _, (L—pe_ . |
T e
We can therefore write
a_g — __2f Iqur .
k 5] Ia + Iqr

The same result is found for b}; and since 1/6 = Af, we get for the spectral
density of the anode current
GL(f) Af = 2 1.1,

LrnYy

Comparing Eqs. (54) and (55), it can be seen that the complete
suppression of the shot-effect fluctuation before the partition of the
current reduces the fluctuations in the anode current by the factor
I ,‘,/ (I, 4+ I,,). Intheactual case when the initial current is space-charge
limited, the shot-effect fluctuations are only partially suppressed; hence
the fluctuations in the anode current must be expected to lie between the
values given by Eqs. (54) and (55). A more precise analysis! shows that
in the general case

(55)

I, + T2,
I.+ I,

where I'? is the space-charge reduction factor that was discussed in Sec.
47. For I'? =1 (no space-charge suppression, temperature-limited
case) Eq. (56) becomes Eq. (54), whereas for I'? = 0 (complete space-
charge suppression) Eq. (56) becomes Eq. (55).

In exactly the same way, we find, for the spectral density of the screen-
grid current,

Gi.(f) Af = 2el, Af, (56)

I, + T2,
Ia + Ipr Af

North? tested Eqgs. (66) and (57) and found excellent agreement with
experiment.

4-10. Transit-time Effects in Triodes and Multicollector Tubes;
Induced Grid Noise.—Equations (56) and (57) of Sec. 4-9, for the spectral

1 Cf. D. 0. North, “Fluctuations in Space-charge-limited Currents at Moderately

High Frequencies,” RCA Rev., 5, 244 (1940).
? Loc. cit.

ler(f) Af = 26197 (57)
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densities of the plate and screen-grid current, hold only for frequencies
that are small compared with the reciprocal of the transit time. Because
of our lack of knowledge about the frequency dependence of the space-
charge reduction factor I' (¢f. Sec. 4'8), nothing can be said at present
about the h-f end of the spectra G.,(f) and Gy, ().

There is one effect, however, for which an approximate theoretical
treatment can be devised. It is clear that every time an electron passes
through a grid, a current pulse will be induced (see Fig. 4-18). The

current will rise rapidly from zero to a maxi-

IT mum value during the period in which the
electron approaches the grid. When the elec-

J tron goes through the grid the current drops
to a negative value; finally, while the electron

t—=  recedes from the grid, the current passes

through a minimum and subsequently goes

back to zero. The total current is, of course,

zero, since the electron is not captured. The

duration of the pulse is of the order of the

. Fre. 418.—Current pulse transit time. It is clear that these current
g;s:esgﬁldm:?ﬁ? one electron ) 1ses will contribute to the h-f part of the
noise spectrum. For the case of the nega-

tive-grid triode this effect has been investigated, both experimentally
and theoretically, by North and Ferris! and by Bakker.2 In this case we
speak of tnduced grid noise. Since the grid does not capture any elec-
trons, the spectral density of the grid current will have no 1-f components
arising from the partition of the current, and for low frequencies it can be

expected that :
G, (f) = PG,

since each induced current pulse in the grid is like the derivative of the
current pulse arriving at the anode. A more detailed analysis shows that

G.(f) = % ()6 (1), (58)

where w = 2nfis the angular frequency and 7, is the transit time between
cathode and grid.

Equation (58) can be further transformed by introducing the concept
of the electronic load conductance of the grid cireuit. It is clear that the
induced grid currents will give rise to an addition to the input conduct-
ance of the tube, and it can be easily seen® that this addition, called the

1D. O. North and W. R. Ferris, Proc. I.R.E., 29, 49 (1941).

2 C. J. Bakker, Physica, 8, 23 (1941).

® For a simple qualitative theoretical consideration (proposed by B. J. Thomson),
see W, R. Ferris, Proc. I.R.E., 24, 82 (1936).
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‘“electronic load conductance,”’! is proportional to the square of the
frequency and to the grid-plate transconductance ¢. of the triode.
More detailed calculations of g, have been made by Bakker and
deVries? and by North.? From these calculations it follows that, for high
—u tubes, operating under such conditions that the grid-plate transit
time is negligible compared with the cathode-grid transit time,

9o = Fogm(wry)™. (59)

For the spectral density of the anode current we can use the results
derived in Sec. 48 [see Eq. (50)]. Taking ¢ = 1, we have

G.(f) =12 (1 — 1;) kT gm. (60)

Introducing this expression in Eq. (58) and by means of Eq. (59) express-
ing wr, in terms of g, and g., we obtain

Gi(f) = —2?? (1 - ’31) 4kT.g,. (61)

The limitations of this formula should be kept in mind. Besides
high-x and negligible grid-plate transit time, the main assumption is that
the transit angle w-, is so small that the space-charge reduction factor T’
can still be considered to be independent of the frequency.

It should be further emphasized that the fluctuation in the grid
current is coherent with the fluctuation in the plate current. In general,
therefore, these fluctuations cannof be compounded in the usual fashion
by adding the mean square values. Since for small transit angles the
phase angle is obviously nearly 90°, the addition of the mean square
values is correct if the input impedance is a pure resistance. It is
incorrect if the input impedance has an inductive part. By making use
of this fact we can cancel part of the induced grid noise (see Sec. 5-5).

ADDITIONAL SOURCES OF NOISE

4.11. Current Noise; Flicker Effect; Positive Ion Fluctuations.—
Thermal noise and shot noise are the two sources of noise that have been
rather well investigated, both experimentally and theoretically. Usually
they are also the most important sources of noise that occur in practice
and that have to be considered in the construction of tubes and in the
design of amplifiers and detectors. This does not imply that thermal
noise and shot noise are the only sources of noise. There are other

1D, O."North, Proc. I.R.E., 24, 108 (1936).
t C. J. Bakker and G. de Vries, Physica, 2, 683 (1935).
2 Loc. cit.
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sources, not so well investigated and understood, that may involve other
fluctuation ‘““mechanisms.” Here only some of these additional sources
of noise will be mentioned; more detailed discussion can be found in the
literature.

In semiconductors, in thin metallic films,! and in resistance elements
of the granular type (e.g., carbon microphone, commercial grid leaks)?
the voltage fluctuations depend strongly on the current passing through
the element.® Of course, when there is no current flowing, the spectrum
of .the voltage fluctuations G.(f) is given by the Nyquist formula. If a
d-¢ current is passing through the resistance, the voltage fluctuations
across the resistance increase by an amount that for small currents is
approximately proportional to 7? and for higher currents becomes pro-
portional to I. Because of the dependence on I the additional noise is
sometimes called current noise. The proportionality to I? suggests that
the origin lies in a fluctuation of the resistance, either because the number
of conduction electrons varies or because of random changes in the con-
tact areas between the different granules that make up the resistance.

The frequency dependence of the current noise has also been investi-
gated. In the a-f range it is found that G.(f) is inversely proportional to
f; and above 10 kc/sec, G.(f) usually becomes small. A proposed
explanation is that the cause of the fluctuations is connected with the
presence of ions, which would affect the number of conduction electrons
or the contact resistances. If we assume further that these ions have a
certain lifetime, it may be expected that the current will consist of a
random series of bursts of the form e~*, where « is the reciprocal of the
lifetime of the ion. This assumption leads to a spectrum of the form

G.(f) = W

For large f, G.(f) will be =~f-2 whereas for small f, G,(f) will be constant.
One might think, therefore, that the experimental data may be repre-
sented by Eq. (62). For the current noise, nevertheless, this possibility
seems unlikely.*

Additional sources of noise have also been found in electron tubes.
In the a-f range the current fluctuations are much larger than would be
expected from the shot-effect fluctuations. This increase is called the
“flicker effect”; it has been investigated experimentally by Johnson,?

1Cf. J. Bernamont, Ann. Phys., T, 71 (1937); Proc. Phys. Soc., 49, 138 (1937).

2E. Meyer and H. Thiede, E.N.T., 12, 237 (1935); C. J. Christensen and G. L.
Pearson, Bell System Techn. J., 16, 197 (1936).

3 This is in contrast to the thermal voltage fluctuations across a metallic resistance,
which are independent of the current (sce Sec. 4-5).

4+ For a discussion of the crystal noise, which belongs in this category, see Sec. 5-3.

¢ J. B. Johnson, Phys. Rev., 28, 71 (1925).

(62)
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who found that the increase is proportional to the square of the average
current and that it is strongly frequency-dependent. For frequencies
above 5 kec/sec, the flicker effect disappears. A theory proposed by
Schottky! attributes the flicker effect to random changes in the emissivity
of the cathode produced by the presence of foreign atoms on the surface.
Let us suppose that one foreign atom causes an additional current cl,
where [ is the average current and ¢ a constant; let the average number of
foreign atoms per square centimeter of the surface be N and the lifetime
of a foreign atom be 1/a. Then the spectrum of the current fluctuations
is given by the formula

Gi(f) Af = 2¢I Af + 4Nc2I? (63)

[+

et @Y
The second term represents the flicker effect and is in qualitative agree-
ment with the observations of Johnson. The order of magnitude
of the flicker effect is usually expressed in terms of an apparent electronic
charge. For low frequencies apparent charges of the order 100e¢ are
common. For oxide-coated filaments the flicker effect is much more
pronounced than for pure tungsten filaments, again in accord with the
ideas of Schottky.

At higher frequencies (100 to 1000 ke/sec) increases of the current
fluctuations have been observed when the tube is operated in the space-
charge-limited region.? These increases (the apparent electronic charge
can be of the order 10¢) are caused by the presence of positive ions trapped
in the potential minimum. The slow motion of these ions releases
random bursts of electrons. The positive ions are produced by evapora-
tion from the cathode or by collision ionization of the residual gas atoms
in the tube. This positive-ion effect disappears if the plate voltage is
raised, and the current becomes temperature limited. The frequency
dependence of the effect has not been investigated.

1'W. Schottky, Phys. Rev., 28, 74 (1926).

*H. N. Kozanowski and N. H. Williams, Phys. Rev., 86, 1314 (1930). For a
theoretical development and more recent experiments, see B. J. Thompson and D. O.
North, RCA Rev., 6, 371 (1941).




CHAPTER 5
RECEIVER NOISE

b-1. Introduction. Separation of Noise Contributions.—The noise
voltage appearing at the output terminals of a receiver actually arises
from many sources. Some noise is generated by the antenna itself,
which, as we shall see in Sec. 52, is due to incoming electromagnetic
disturbances. In addition to this antenna noise there are several sources
of noise within the receiver; chief among these noise contributions are the
(crystal) converter noise, the local-oscillator noise, and the noise gener-
ated within the i-f amplifier. Here it need be noted only that these noise
contributions are essentially independent. This fact assures that in a
linear system the total noise power is the sum of the powers of the indi-
vidual noise contributions. Furthermore this independence makes it
possible to break the receiver into hypothetical pieces in each of which the
detailed behaviors of signal and noise are studied, with a view toward
ultimately synthesizing the over-all signal and noise contributions.
Friis! has presented a method by which this analysis can be effected.
The following analysis utilizes extensively the methods of Friis, with
modifications devised by Roberts.?

The superheterodyne converter is essentially linear (see Sec. 2-2), and
the i-f amplifier stages (at least at low level) are linear; let us thus assume
that the over-all superheterodyne receiver consists of a series of linear
networks; each of these networks is characterized by an input and output
impedance and a gain that will shortly be defined. These three param-
eters are generally complex and depend upon frequency. It is not
essential that the input and output signal frequencies be identical; it is
necessary only that the network be linear, i.e., that the output signal
voltage be linearly related to the input signal voltage.

Each of these linear networks serves to amplify (or to attenuate) the
signal as well as any noise produced either in the device generating the
signal or in preceding networks. In addition to this, the network in
general adds some extra noise; this extra noise is the only quantity that
prevents the network (or over-all receiver) from being ‘theoretically
ideal.” The attempt will be made therefore to specify the characteristics

L H. T. Friis, “Noise Figures of Radio Receivers,” Proc. I.R.E., 33, 458 (1945).
2 8. Roberts, “Some Considerations Governing Noise Measurements on Crystal
Mixers,” Proc. I.R.E., 35, 257 (1947).
98
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of the over-all receiver in terms of this ideal receiver; this specification, to
be definite, must assume certain properties of the input-signal generating
device. [Since the properties of the antenna depend upon external
radiation, which may be quite different under different conditions (see
Sec. 5:2), it is customary to measure the properties of a receiver by means
of a signal generator connected to its input terminals.] This signal
generator is any device which can be represented, according to Thévenin’s
theorem, as a constant voltage source ¢, in series with an impedance
R, +iX,.

Available Power.—The available power from the signal generator or a
linear network is simply the mazimum power that can be taken from the
network by a suitably adjusted load. In the case of the signal generator
mentioned previously the available signal power S, is

S = 5 (1)

Y
In addition to the available signal power from the generator, there is a
noise fluctuation voltage due to B,. The open-circuit mean-square noise
voltage from the generator within a narrow frequency interval df (see
Sec. 3-1) is

Gv(f) df = 4kTR, df, (2)
where k is Boltzmann’s constant and 7 is the temperature of R,. The
quantity Gv is the power spectrum expressed in mean-square volts per
unit frequency interval. Therefore, the available noise power dN, from
the signal generator is

_&(Hdf _
aN, = =g = kT df, @3)

which does not depend upon the generator impedance but does depend
upon the temperature of the generator resistance and the bandwidth df.
To standardize the performance of the generator it is necessary to choose
some standard temperature T'; it is customary to choose T, as 292°K,
since this is a reasonable approximation to the ambient temperature at
which measurements are made, and since for this value of temperature
there is obtained the simple relation

oo &5 volt, @
where e represents the electronic charge.

The Gazin of a Network.—The power gain @ of a network will be defined
here as the ratio of available output signal power to the available input
signal power delivered either by the signal generator or by a preceding
network. On the basis of this definition the gain is seen to depend upon
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the impedance of the generator but not upon the impedance of the load.
It does not represent the actual power gain unless suitable matching loss-
less networks are inserted between the generator and load. The over-all
gain of a series of cascaded networks is the product of the gain factors of
the individual networks.

The actual measured output power of the network is not necessarily
the available output power. The quantity with which we are ultimately
concerned, however, is the ratio of signal to noise power, i.e., the ratio
of gain to noise power. The ratio of measured output power to available
output power when the network is connected to a mismatched load will be
identical for both signal and noise; hence only available gain need be
dealt with in the analysis that follows.

Noise Figure—As the noise and signal proceed from the signal
generator through the various networks, the ratio of noise power to
signal power increases. The reason for this increase is the extra noise
contributions from the networks themselves. Let us consider the ratio
of output noise to signal power (available) dN,/S,, where the output
noise power dN, is measured in a frequency band df centered at the signal
frequency. This quantity is larger than the corresponding quantity at
the signal generator by a factor ¥, which is called the noise figure of the
network. N N

o __ ﬂ-
s 0,
In this definition of noise figure the two signal frequencies can be different,
but the noise at each point must be measured in a narrow band of given
width df centered at the signal frequency. Furthermore, it is assumed
that there is a one-to-one correspondence between input and output
frequencies. This last assumption is not generally fulfilled in a super-
heterodyne converter; but if the image response is suppressed by pre-
selection or by other means (see Sec. 2:2), Eq. (5) is valid. If the image
response is not suppressed, extra noise will be found in the output of the
network. Therefore, presupposing good converter design, it will be
assumed (in those cases where it matters) that the image response is
properly suppressed.

The expression for the noise figure F may be written in a slightly
different way. The increase of F over unity is explained by extra output
noise dM, generated within the network.

dN, _ GkTodf | dM, _ . kTydf

5, - 05, tes, ~f—s ()

()

or
M,

F=1=rra

@
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Integrated Noise Figure.—The noise figure is in general, as just defined,
a tunction of frequency. It is useful, however, to speak of the integrated
noise figure F; of a network which represents the increase of the ratio of
total noise to signal power by the network.
From Eq. (5) we may write
dN, = FGdN, = FGkT, df (8)
and

N, = f " FGKT, df. )
0

The noise that would have appeared at the output from an ideal network
is j; " GkT, df; hence we may write

j * FGKT, df
= (10)
ﬁ) Gk T, df
If the bandwidth of the network Af is defined as
Af = ./-QGdf an
- Gmnx 0 ’

where Gua: is the maximum of the gain vs. frequency characteristic, we
may write
Na

Fo= e, af

(12)

Cascaded Networks—When two networks in series follow the signal
generator, an expression for the over-all noise figure of the combination
may be derived in terms of the noise figures of each section.

The over-all output noise power dN,,, within a narrow band df cen-
tered at the signal frequency is made up of two parts. The first part is
the output noise from the first section dN, amplified by the second net-
work according to its gain G, and the second part is the extra noise
contributed by the second section. This second contribution can be
derived from Eq. (7). We may write

dNﬂn = dNal 2+ (Fz - I)szTo df (]3)
or
F12GlG2kTo df = FlGlekTo df + (F2 - 1)02’\'7‘0 df, (14)

where Fi; is the over-all noise figure. From Eq. (14),

Fi,=F, +E3f, 1

G (18)
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Thus the over-all noise figure can be expressed in terms of the noise
figures of the individual networks. This expression is especially useful
in deriving the noise figure of the first network by measuring F,, F;, and
G1; this procedure is currently used in connection with crystal converters
(see Sec. 5-3).

One can proceed from two to three networks by considering the first
two networks as a single network and then applying Eq. (15).

Fo—1  Fy—1

F123 = F12 + 1G - Fl + Gl + 'm (16)

If one proceeds in this way the over-all noise figure of » sections will be
_ Fa — o F.—1 )

Fi.. Fi + Gy + TO0G. + + GG, - Gy a7)

It can be seen (and a little reflection makes it obvious) that after any
high-gain network the over-all noise figure is not markedly influenced by
additional networks even though their individual noise figures are rela-
tively high. Thus in the superheterodyne receiver one need be concerned
only with the r-f amplifier, the converter—which in the microwave field
generally has a gain less than unity—and with the first stage or two of the
i-f amplifier.

An expression analogous to Eq. (17) can be derived for the over-all
integrated noise figure of cascaded networks, but only if the bandwidth
of the final network is narrow compared with the bandwidth of any
preceding section.

By analogy with Eq. (10) the following equation may be written:

[ Fi. .G:\G: - - - G kTodf

Fil-..n
ﬁ) GGy - - - G kTodf

(18)

Since the bandwidth of the nth section is assumed narrow compared with
that of any preceding network, the only quantities in Eq. (18) that depend
upon the frequency are F,, and G.. From Egs. (10), (11), (17), and (18),
we may write

Fy— 1
Fon=Fi+z1y s Ly +—1G) S
Fi— 1
G, o, 9

The form of this equation is similar to that of Eq. (17); it should be noted,
however, that for the intermediate networks the noise figures themselves
are used instead of the corresponding integrated noise figures.
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5-2. Antenna Noise. Introduction.—The noise appearing at tne
output of a receiver has its origin partly in the receiver and partly outside
the receiver. This external noise is picked up by the antenna and is
generally referred to as ‘“‘antenna noise.” For receivers operating in the
broadcast band this type of noise is largely either man-made or atmos-
pherie in origin. For receivers operating in the short-wave bands these
two effects are still important but an additional, new type of noise
appears. This new random fluctuation, called cosmic noise, has its
origin, as its name suggests, outside the solar system, in the direction of
the center of the galactic system.! Because of the relative impenetra-
bility of the ionosphere, cosmic noise is not of importance at broadcast
frequencies.

Antenna noise at microwave frequencies is largely thermal in origin.
It has been found experimentally that with few exceptions (e.g., radiation
from fluorescent lights) antenna noise at microwave frequencies could be
traced to thermal radiation emitted by surrounding objects. The
antenna noise at microwave frequencies is, as will be shown later, nearly
always small compared with the other sources of fluctuation in present-
day microwave receivers. Any discussion of ultimate performance must
be based, however, upon a knowledge of the antenna noise. Since the
thermal radiation intercepted by an antenna depends upon the object at
which the antenna is pointed, it is clear that there is no ““best” per-
formance for a receiver. The limiting sensitivity of a receiver will
depend upon the nature of the objects at which the antenna is pointed.

Connection between Black-body Radiation and Electrical Noise.—Let us
consider the hypothetical system shown in Fig. 51. An antenna is
connected to a resistor by a transmission line. Both the antenna and
resistor are assumed to be matched to the transmission line. The
antenna is completely surrounded by the enclosure .S, whose inside walls
are assumed to be “black” at radio frequencies. The temperature of
this black-body and of the resistor are assumed to be equal to 7 on the
Kelvin scale. It is clear that the system is in thermal equilibrium and
that the black-body radiation intercepted by the antenna must balance
that lost by the resistor as a result of noise fluctuations in the resistor.
It has been shown (Sec. 4-1) that, because of thermal fluctuations, the
power P, that can be abstracted from the resistor by the matched antenna
is simply kT per unit frequency interval. Therefore, in thermal equilib-
rium, the power P; absorbed by the antenna and delivered to the resistor
is also equal to kT per unit frequency interval. We may calculate P,
specifically in terms of the electrical properties of the antenna. The
black-body radiation intensity per unit frequency interval and unit

' K. G. Jansky, Proc. I.R.E., 26, 1517 (1937); G. Reber, ibid., 30, 367 (1942).
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solid angle is, according to the Rayleigh-Jeans law,
2
I =257 (20

The antenna is usually capable of absorbing only one of two orthogonal
polarizations. Therefore,

P, = [ ¢ 5 d9, @1)

Q

where ¢ is the effective receiving area of the antenna. Since I is inde-
pendent of the angle €,

I I

P2 = § /ﬂddﬂ = Q 47I'U'.v¢, (22)

where o.. is the average receiving area of the antenna for all directions.
Since P, is also equal to kT per unit frequency interval,

kT = 4m.v.f—2 kT, (23)
x2
Tavg = E (24)

This is the well-known expression for the effective receiving area for any
antenna (see Vol. 12 of the Radiation Laboratory Series).

The antenna, in so far as the generation of noise power is concerned,
may therefore be viewed as a resistor whose value is the radiation resist-
ance of the antenna at a temperature equal to the temperature of the

Temperature T

Temperature T

F1g. 5:-1.—Thermal equilibrium between a resistor and a black-body.
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antenna’s surroundings. If the surroundings of the antenna are not all
at the same temperature, an average temperature may be defined. This
average temperature will be called the antenna temperature and may be
defined as the temperature which a black-body (see Fig. 5-1) must have
in order to duplicate the antenna noise.

Antenna Temperature of Sky.—Since the antenna temperature of a
highly directive microwave antenna depends upon the direction in which
the antenna is pointed, the antenna temperature must be investigated
under a variety of conditions. First let us consider the temperature of

Black bod
[ at.rll.'?oz::lere / temperaturey T
[ Ik
Fractional “‘. Air temperature T { _____ 7 _____ T
absorption " antenna temperature=7T [ _____ e <‘
1 N i | TA=7
______________________ Atmospheric ; ¢ Fractional
Antenna \,i temperature T *——— absorption ¥
Z+T(1=-7)=T
(x=7T)
(a) (0]

Fig. 5:2.—Atmospheric absorption as a source of thermal radiation.

a highly directive antenna pointed at the zenith. An experimental
investigation has shown that with the exception of the sun and moon,
radiation from astronomical bodies is negligibly small at wavelengths of
the order of 1 em. In particular, stellar radiation has been found
experimentally to contribute less than 20°C to the antenna temperature
for wavelengths of approximately 1 em, and it can be easily calculated to
contribute less than 10-%°C. Thus it seems plausible that thermal
radiation external to the solar system is completely negligible as a cause
of antenna noise at microwave frequencies; hence it is necessary to
examine the earth’s atmosphere for sources of thermal radiation.

The atmosphere cannot radiate unless it absorbs at microwave fre-
quencies. Figure 5-2a and b illustrates how the antenna temperature can
be calculated in the case of a partially absorbing atmosphere. In Fig.
5-2b the earth’s atmosphere is surrounded by an imaginary black-body
at the same temperature as the atmosphere. The radiation z arising in
the atmosphere must just compensate for the partial absorption of the
black-body radiation in the atmosphere. This fact leads to the result

z =~T (25)

for the antenna temperature, where v is the fractional absorption of the
atmosphere. Because of absorption in water vapor, the antenna tem-
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perature can, in the l-cm region, become as great as 70°K. At wave-
lengths of 2 to 10 em the atmospheric absorption is so small that the
antenna temperature of an antenna directed at the zenith ought to be
extremely small.

When the antenna is directed at an angle # from the zenith, the
increased path length through the atmosphere produces a greater amount
of absorption and hence a higher antenna temperature than for the
antenna pointed at the zenith. If 7' is the antenna temperature at an
angle  from the zenith and 7 is the atmospheric temperature, then

TG _ _ TO sec 9.
7=1- <1 7) (26)

The ionosphere can play a part in the effective antenna temperature,
but experimental measurements have indicated that at wavelengths of
1 cm contributions are less than 5°C. The effective temperature of the
ionosphere itself may be high, but apparently the negligible absorption
at microwave frequencies accounts for the negligible radiation emitted
by the ionosphere.

Antenna Temperature of Ground Objects—When the antenna is
pointed at surrounding ground objects, the antenna temperature can vary
widely, depending upon the nature of the object. The amount of thermal
radiation from a body depends upon the degree of blackness of the body.
Tf the object at which the antenna is directed is not a black-body, it
reflects partially, and the total radiation from the object depends not
only on the temperature of the object but also on the temperatures of
reflected objects. For example, a metal does not emit at microwave
frequencies but merely acts as a mirror to reflect the radiation from other
objects or from the sky. A metallic object may appear very cold if it is
oriented in such a way as to reflect the radiation from the sky to the
antenna.

Figure 53 shows the antenna temperatures at a wavelength of 1 cm
resulting from pointing an antenna at ground objects. The curves are
measured antenna temperatures as a function of azimuth angle for various
declination angles. Several features merit special mention. (1) As the
declination angle was increased, the average antenna temperature
increased until at an angle of 91° the average antenna temperature
was approximately equal to the air temperature. (2) The presence
of the chimney A4 is indicated by its thermal radiation. The electro-
static-generator housing F is a metallic structure capped by a hemispher-
ical dome. It should also be noted that, at a declination angle of 91°
the antenna temperature falls very low when the antenna is pointed at
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the dome. This fact indicates that the sky is reflected by the dome to the

antenna.
Role of Antenna Noise in Recewver Performance.—1f T, the temperature
of the antenna, differs from Ty, the effective receiver noise figure must be
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Fic. 5:3.—Optical and microwave radiometer panorama of the Cambridge, Mass.,
skyline from a point on Building 20, MIT. The labels on the curves of the upper diagram
are the antenna angles measured from the vertical. Similarly, the angles indicated on the
left side of the lower figure are measured from the vertical,
{A) Chimney of MIT powerhouse (E) Lever Brothers Company chimney
(B) Radiation Laboratory, Building 24 (F) Electrostatic accelerator, MIT
(C) and (D) Sheds on Building 20

modified. Let us denote the modified noise figure by F*. Analogously
to Eq. (6),

dN, GkT df i M, P kT, df
S, TGS, TGS, S,

where S, refers to the signal power available from the antenna. DBut

27)
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from Eq. (7),
_aM, _ ., T
F——l-GkTodf—F -7 (28)
Therefore,
F*=F + (ﬂ - 1)- (29)
T, .

This expression assumes, as in the case for normal noise figures discussed
in Sec. 51, that only one r-f sideband is effective in contributing noise.
If this condition is not met, more noise will be experienced in the receiver
and Eq. (29) will have to be correspondingly modified.

It can be seen that if T is very low, the effective noise figure F* can be
substantially lower than unity. This curious result is explained by the
arbitrary way in which the “standard’’ temperature T was chosen; it in
no way violates fundamental noise principles.

6-3. Converter Noise. Introduction.—It is pow generally recognized
that the superheterodyne receiver has one of the lowest noise figures; it
is universally used where weak signals are to be encountered. If the
receiver is equipped with r-f amplification, the over-all noise figure is
determined almost entirely by the noise figure of the r-f amplifier itself
[see Eq. (17)]. The important characteristics of the r-f amplifier are the
same, generally, as the corresponding characteristics of the i-f amplifier
to be discussed in Sec. 5-5; the essential difference is the higher frequency
of the r-f amplifier, causing transit-time effects to be relatively more
important. If the receiver is not equipped with a high-gain r-f amplifier,
the over-all noise figure will be greatly influenced by the properties of the
mixer or converter. There are many types of converters in common use.
In the microwave region a small crystal rectifier is now almost universally
used; therefore such a mixer will be assumed in the following discussion.!

The two important properties of a crystal converter that affect the
over-all noise figure are its conversion gain (or loss) from radio frequency
to intermediate frequency and the effective temperature of its if resist-
ance viewed at the i-f terminals of the mixer. The importance of these
two quantities is shown by Eq. (15), which can be rewritten in a form
containing the effective if temperature and the conversion gain. The
noise figure of the converter F, is, specifically, the ratio of its noise output
to that of an ‘““ideal” converter, i.e., one that has an available noise
output equal to GikTo df. If we write the effective i-f temperature of the
converter as £, 1.e., the ratio of actual available if noise power to the
available noise power from -an equivalent pure resistor, we may relate

! For vacuum-tube mixers, the reader is referred to W. A. Harris, “ Fluctuations in
Vacuum Tube Amplifiers and Input Systems,” RCA Rev., 5, April 1941,
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F,, G4, and ¢ in the following way:

Fy Gy’ (30)
1
and so, from Eq. (15),
Fo='T 221— 1 31

This equation shows how the crystal i-f temperature and gain influence
the over-all receiver noise figure. In most cases Gy is actually less than
unity; i.e., the conversion gain is really a loss. Since G, is a factor that
influences F,, in inverse fashion, it has been customary to express Eq.
(31) logarithmically:

10 10g10 Fia =10 lOgm (t + F, — 1) — 10 IOglo Gl, (32)

where (—10 logi, @) is the conversion loss of the crystal expressed in
decibels and (10 log;s F12) is the over-all noise figure also expressed in
decibels. Thus an over-all noise figure of 3.01 db really means an over-
all noise figure F1; of 2; likewise a conversion loss of 6.02 db really means a
value for G; of +. The advantage of this loose way of expressing con-
version loss and noise figures is that a change in loss of # db results in a
change in over-all noise figure of just n db.

Crystal mixers in common use show an effective i-f temperature ¢
ranging between 1.0 and very large numbers; the conversion loss is
usually between 5 and 10 db. Since the i-f noise figure ¥ can usually be
made less than 2 (see Sec. 5-5), the crystal characteristics play an
extremely important part in the over-all noise figure. In the following
discussion there will be given the important experimental observations,
together with a brief explanation of current theories of crystal per-
formance. For a complete treatment of this field the reader is referred
to Vol. 15 of the Radiation Laboratory Series.

Exrperimental Observations.—A crystal rectifier consists of a small
semiconducting block, such as germanium or silicon, embedded in a
suitable case. On one exposed surface of the semiconductor a contact is
made with a fine, pointed, metallic wire. The whole assembly is a two-
terminal device, which acts much like a diode rectifier.

1. When crystal rectifiers are unexcited by direct or alternating
current, the noise power available from them is just that given by
the Nyquist formula, i.e., kT df. This is an experimental result
and is in accord with the requirements of thermodynamies.

2. A crystal excited by either direct or alternating current puts out
more noise in general than an equivalent resistor. This does not
violate the laws of thermodynamics, since the system is not in
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thermodynamic equilibrium. In a superheterodyne mixer or
converter the quantity of interest is the effective i-f noise tem-
perature ¢ when the crystal is excited by local-oscillator power of
the order of 1 mw. The corresponding rectified current ranges
from 0.5 to 1.5 ma. It is found experimentally that ¢ has values in
the range from 1.0 to 3.0. In no authentic cases have values less
than 1.0 been measured, although such values cannot be excluded
on the basis of current theories. Values of ¢ < 1.0 have been
obtained with d-c¢ excitation, however. For burned-out crystals
t may become very large (10 to 20).

3. Miller et al.! have measured the noise temperature of crystals
(excited either by d-¢ or microwave currents) for frequencies
between 30 cps and 1 Mc¢/sec. They find that at low frequencies the
noise temperature is inversely proportional to the frequency; this
phenomenon appears to be independent of the means of excitation.
The fact that this law holds down to a frequency of 30 cps indicates
that the mechanism responsible has a very long time constant.
In many ways this effect is like the ‘“flicker’’ effect in thermionic
tubes (see Sec. 4-11).

At the moderately high frequencies especially useful in i-f
amplifiers, the noise temperature is essentially independent of
frequency. It has been found, however, that there is a close
correlation between audio noise temperatures and 30 Mec/sec
noise temperatures; this suggests that the same mechanism may be
responsible in both frequency regions.

4. The noise temperature (—1) is approximately proportional to
rectified current up to 2 or 3 ma. At higher currents the curve
departs from linearity, in the direction of smaller ¢.

5. The noise temperature and conversion loss of a crystal rectifier is
a function of the termination of the two noise sidebands generated
by the crystal. These sidebands, for an intermediate frequency f
and local oscillator frequency fo, occur at fo + f. R. Beringer?
has shown that the conversion loss and noise temperature ¢ go in
opposite directions with image sideband tuning. However, the
changes in loss are much greater than those of ¢; hence for minimum
noise figure the sideband should be tuned for minimum loss.

6. With local-oscillator excitation the noise temperature is influenced
by d-c bias; it changes very little for bias in the forward direction
but may increase by a considerable amount for even a small back

1P, H. Miller, M. N. Lewis, L. 1. Schiff, and D. E. Stephens, “Noise Spectrum of

Silicon Rectifiers,” NDRC 14-256, U. of Pa., Mar, 20, 1944; P. H. Miller and M. H.
Greenblat, “Crystal Audio Noise,” NDRC 14-387, U. of Pa., Jan. 5, 1945.

? Private communication.
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bias (self-bias). For example, a back bias of 0.1 volt may cause ¢
to increase by more than unity. This effect is especially marked in
those crystals which are already somewhat noisy at zero bias.

7. A. Lawson ¢f al.! have measured ¢ as a function of the temperature
of the rectifier. Changes in ¢ were observed, but they were as
likely to have one sign as the other.

8. In addition to the influence of termination impedances at signal
frequency and image frequency, it has been observed that termina-
tion impedances at harmonics of these frequencies contribute
materially to noise temperature and conversion loss. Since these
termination impedances depend critically upon the particular
circuit in which the crystal rectifier is placed, it follows that the
two properties of the crystal rectifier with which we are concerned
will also depend on the particular mixer circuit.

Theoretical Ideas.—Weisskopf? has examined the problem of crystal
noise and has suggested three sources of noise: (1) thermal noise of the
spreading (semiconductor) resistance, (2) shot noise caused by electrons
flying over the barrier, and (3) ‘‘fluctuation” noise caused by motion of
charges on the contact surface. The effective noise temperature can be
easily calculated if ‘‘fluctuation’’ noise is assumed negligible; the result is

e s, T
T, IR? 4 7, r.

t—MR—Q—r (33)

where r is the spreading resistance, R is the dynamic resistance of the
barrier, T is the physical temperature of the semiconductor, and I is the
sum (arithmetic) of the electron currents from metal to semiconductor
and from semiconductor to metal, since both of these currents are equally
effective in producing shot noise. For a voltage V such that |V| > kT /e,
I can be taken to be the actual direct current through the reectifier;
however, for V = 0 and T = Ty, I becomes equal to e/2kToR.

R. N. Smith?® has measured the noise temperature with d-c excitation
as a function of voltage and, comparing his result with Eq. (33), has
found that the measured temperature generally exceeds the predicted
temperature, although in a few instances the observed noise was less
than predicted. In at least three instances observed noise temperatures

A, W. Lawson, P, H. Miller, and D. E. Stephens, “Noise in Silicon Rectifiers at
Low Temperatures,” NDRC 14-189, U. of Pa., Oct. 1, 1943.

2V. F. Weisskopf, “On the Theory of Noise in Conductors, Semiconductors and
Crystal Reetifiers,” NDRC 14-133, May 12, 1943.

3 “Crystal Noise as a Function of D-¢ Bias,” NDRC 14-167, Purdue U., June 25,
1943.
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were less than unity at a forward bias of 0.1 volt. In each of these
instances Eq. (33) correctly predicted the observed value.

It should be emphasized that Eq. (33) is valid only for d-c excitation;
no useful formula for crystal noise with a-c¢ excitation has yet been
derived.

Observed noise in excess of the thermal and shot noises just mentioned
has never been satisfactorily explained. Most of the mechanisms that
have been suggested have not led to useful expressions, nor have they
properly predicted the frequency dependence of audio noise. It is
likely that most of this excess noise is caused by surface contamination of
the contact; if this is true, it is not difficult to see why a quantitative
formula is not yet available.

b-4. Local-oscillator Noise. Introduction.—In the preceding section
the conversion gain and temperature of a crystal mixer was seen to depend
upon many factors. Nevertheless one important source of noise appear-
ing in the mixer was not mentioned for the reason that this noise has its
origin not in the mixer but in the local oscillator. Furthermore, it is
possible, by methods to be described, virtually to eliminate this local-
oscillator noise. Even so, it is still important to understand the origin
of local-oscillator noise.

The mixer has been considered as a (nonlinear) network upon which
is impressed the r-f signal and the local-oscillator voltage and from which
the i-f signal is taken. The local-oscillator voltage is generally assumed
to be a pure sinusoid; but as we shall see, this assumption may not be
valid. In fact the r-f terminals of the mixer may contain, besides the
signal and loeal-oscillator sinusoid, r-f noise voltages generated within the
local oscillator itself. These noise voltages, to be sure, are very small
compared with the c-w local-oscillator voltage, but they may easily
exceed a small signal voltage. It is clear that the only local-oscillator
noise with which we shall be concerned is the noise appearing at the signal
frequency and at the image frequency; these two noise sidebands,
separated from the local-oscillator frequency fo by approximately the
intermediate frequency f, are the only noise frequencies that will contrib-
ute to the mixer i-f noise temperature.

In conventional oscillators, noise is generated in the r-f resonant
circuit principally because of shot and partition noise in the anode circuit;
the spectral density in the resonant element simply follows the resonant
response curve. In more complicated oscillators, such as the reflex
variety, however, the spectral density is not so simple. Since this type of
oscillator is of great importance in the microwave field, a brief account
of its noise characteristics will be given.!

1 For a complete discussion, see Vol. 7 of the Radiatior Laboratory Series.
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Experiments on Noise from Reflex Oscillaiors.—Kuper and Waltz!
have investigated the noise output of reflex oscillators operating at wave-
lengths of approximately 3 and 1 em. Their method was essentially a
determination of the increase in i-f temperature of a crystal mixer result-
ing from the local oscillator noise. This increase in temperature At is
simply
_ @GP
T kT, af
where G is the crystal gain, Af is the bandwidth of noise measured, and P
is the noise power from the local oscillator appearing within the fre-
quency interval Af. In their experiments Kuper and Waltz used a band-
width of 2.5 Mc/sec located either 30, 60, or 90 Mc/sec away from the
local-oscillator frequency. Their results show many interesting features.

At (34)

1. The total noise power in the 30-Mc/sec sidebands within a 2.5-
Mec/sec bandwidth interval for the 3-em oscillator varied between
10~1? and 10—'* watt. This is easily enough power to increase the
effective crystal temperature by several units.

2. The noise power fell off rapidly with increasing intermediate
frequency (larger sideband spacing). At an intermediate fre-
quency of 90 Mc/sec the effective crystal temperatures were not
seriously affected by local-oscillator noise.

3. The variation of total noise power with electrical tuning (reflector-
voltage variation) was asymmetrical. This phenomenon was
definitely established even though the r-f circuits were insensitive
to frequency, i.e., the sidebands as well as the local-oscillator
frequency were matched. Tuning to a higher frequency increased
At.

4. The individual contributions of both sidebands were measured by
means of r-f filters tuned to the appropriate frequencies; these
contributions were, in general, unequal and influenced differently
by the reflector-voltage electrical tuning. In particular, there
appeared to be a crossover point, lying on the h-f side of the center
of the tuning range, at which these two contributions were equal.
Below this crossover point the h-f sideband contributed more
noise, whereas above it the 1-f sideband contributed more.
Extreme values of the noise from the 1-f sideband differed by as
much as a factor of 10; extreme values from the h-f sideband
differed by a factor of about 2.

5. The variation of total noise power with the impedance presented
to the oscillator is different from the corresponding variation of

1J. B. H. Kuper and M. C. Waltz, “Measurements on Noise from Reflex Oscil-

lators,” RL Report No. 872, Dec. 21, 1945,
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c-w power. In general, the ratio of noise to c-w power increases
with admittance; hence for a given c-w power the noise can be
minimized by presenting a low admittance to the oscillator.

Theoretical Ideas.—Pierce! has presented a theory of reflex-oscillator
noise that includes the effects from (1) shot and partition noise in the
electron beam coupled out through the cavity, (2) amplitude modulation
of the oscillator by i-f noise components in the beam, and (3) frequency
modulation of the oscillator at i-f rates caused by fluctuations in the phase
of returning electrons. Kuper and Waltz? have found experimentally
that with adequate bypassing of the oscillator leads the last two mecha-
nisms are relatively unimportant. Knipp? has extended Pierce’s calcu-
lations in two important directions: (1) He considers the noise produced
by the mixing of various electron-beam noise components with harmonics
of the oscillator current; (2) he takes into account the coherence, i.e.,
phase relationship, of the returning current with the incident current.
This coherence causes a marked difference in individual sideband contri-
bution and also an asymmetry in noise output as a function of electrical
tuning.

In its final form Knipp’s theory appears to account correctly for all
the important experimental facts discovered by Kuper and Waltz, not
only as to functional form but also as to magnitude.

Suppression of Local-oscillator Noise.—Although the local oscillator
has for a long time been known to be an important source of receiver
noise, it has also been recognized that this noise can be relatively easily
removed or suppressed. The most straightforward way of accomplishing
its elimination is by means of a tuned r-f filter inserted between the mixer
and local oscillator. If this filter is tuned to the local-oscillator frequency
and has a bandwidth small compared with the intermediate frequency
itself, the noise sidebands with which we are concerned will not be
transmitted through the filter to the mixer. For some oscillators we may
consider the resonant property of the oscillator cavity itself to constitute
such a filter; this is the usual reason why oscillator noise is relatively
unimportant for very high intermediate frequencies. In any case,
however, it is always possible to add a new filter in the local-oscillator
coupling that is sufficiently narrow (high-Q) to suppress local-oscillator
noise. The only flaw in this procedure is the necessity for continually
tuning the filter to the oscillator frequency; this disadvantage can be

1J. A. Pierce, “Noise Calculations for Reflex Oscillators,” BTL Report M M-44-
140-4, Jan. 29, 1944.

2 Kuper and Waltz, loc. cit.

3J. K. Knipp, “Theory of Noise from the Reflex Oscillator,” RL Report 873,
Jan. 10, 1946.
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overcome if a so-called ‘““magic 7’ mixer is used, described in detail in
Vol. 16 of the Radiation Laboratory Series. This form of mixer con-
stitutes a sort of r~f bridge circuit in which the local-oscillator and signal
voltages are applied to two crystal rectifiers. The connection is so made,
however, that the r-f signal voltages applied to each of two crystals are in
phase, the local-oscillator voltage being out-of-phase; therefore the cross
products of the two voltage pairs (i.e., the i-f signals) are out of phase
with respect to each other. The i-f connection is made in such a way
that in-phase i-f contributions from the two crystals are canceled, and
therefore only out-of-phase contributions (namely, i-f signals) are ampli-
fied. The principal local-oscillator contribution to the i-f noise comes
from beats between the local-oscillator carrier and those components of
its noise which are separated from it by the intermediate frequency.
Since the intermediate frequency is small compared with the carrier
frequency, the phase relationship between a noise component and the
local-oscillator carrier at one crystal is virtually the same as that at the
other crystal, even though the carrier itself is = radians out of phase.
Therefore the i-f noise outputs from the local oseillator are in phase with
respect to each other and cancel, whereas, as stated, the signal outputs

add.

It is clear that there are other equally satisfactory ways of arranging
the bridge so that LO noise is canceled and signal components properly
handled. The fundamental reason why it is possible to suppress local-
oscillator noise without at the same time suppressing desired signals is
that the sources are different; this fact makes it possible to build circuits
that discriminate in favor of the desired signals (see also Sec. 56).

-b-b. Intermediate-frequency Noise. Introduction.—In a super-
heterodyne receiver the output voltage from the mixer is connected to
the input terminals of an i-f amplifier. We have seen from Eq. (17) that
if the gain of the first i-f stage is large, the over-all i-f noise figure depends
only on the first stage itself; furthermore we have seen from Eq. (31)
that if we use a crystal converter whose temperature is low (¢ = 1), the
over-all receiver noise figure is approximately proportional to the noise
figure of the i-f amplifier. Therefore the i-f amplifier noise is a very
important matter. A great deal of effort has been expended in designing
amplifiers with low noise figures.

Tubes used in i-f amplifiers have generally been of two kinds, pentodes
and triodes. A pentode would appear to be more satisfactory since the
plate-to-grid feedback (Miller effect) is so low; triodes, however, if
properly used lead to lower noise figures because of the absence of parti-
tion noise. Circuits that have been found useful for triodes are of two
kinds.
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1. The grounded-grid triode, which does not need to be neutralized
(out-of-phase feedback introduced that nullifies the output-to-
input capacitance) but it can be used only where the relatively
high input conductance can be tolerated. This input conductance
is, in fact, simply the mutual conductance g, of the triode.

2. The grounded-cathode triode (the conventional arrangement) would
be very desirable because of its high input resistance; unfortu-
nately, however, if the voltage gain of the tube is high, the
necessary neutralization is extremely critical. For this reason this
type of triode connection has been virtually abandoned.

Nevertheless a very ingenious circuit arrangement, has been suggested
that completely eliminates this difficulty. In this new circuit a grounded-
cathode triode is immediately followed by a grounded-grid triode. If the
triodes are alike, the voltage gain of the first triode is unity (its load con-
ductance is essentially g.); and since its current flows directly to the anode
of the second triode (none is captured by the grid of the second triode),
the over-all mutual conductance of the two tubes is just gm,. Wallman
has shown that the noise contribution of the second triode is negligible;
hence the over-all noise figure is essentially that of the grounded-cathode
triode. Neutralization of the first triode is extremely easy, however,
since its voltage gain is only unity; failure to neutralize at all results in no
instability and in only a slight increase in noise figure.

Representation of Noise Generators.—It has been shown in Chap. 4
that the fundamental sources of i-f noise contributing to anode noise in a
triode are (1) thermal noise in the signal generator, (2) thermal noise in
circuit elements (such as transformer losses, tube glass losses, etc.), (3)
shot noise in the anode, and (4) induced grid noise. For a pentode a
fifth source of noise was mentioned, namely, partition noise caused by
random current collection by the screen grid. In determining the noise
figure of the if stage in terms of these noise contributions it is most
convenient to introduce a hypothetical circuit whose over-all gain and
noise output is in every way just the same as that of the actual i-f circuit.
Such an equivalent circuit is shown in Fig. 5-4, in which it is assumed that
a completely noiseless tube of the same mutual conductance as that of the
actual tube is preceded by particular resistor elements. These resistor
elements are so chosen that their noise contributions correspond to the
various noise contributions in the actual tube. The noise in the grid
circuit will be properly represented by the three load conductances g,
g1, 9, shown in Fig. 5-4; these symbols represent the conductances of the
signal generator (applied directly to the grid), the conductance caused by
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grid-circuit losses, and the effective grid conductance caused by grid
transit-time electronic loading.! The conductances g and g; can usually
be taken to be at standard room temperature T, but it has been shown
[¢f. Eq. (4.61)] that the effective temperature of g, is several times 7.
The quantity g, will be considered noiseless, but let us associate with it
the proper (noise) current generator ¢, as shown in Fig. 5-4.

The three conductances g, g;, and g, together with the current
generator 7, can therefore represent the noise contributions in the grid
circuit; there remains only the

question of the contributions by

shot and partition noise appear- B
ing in the anode circuit. It is °

convenient to introduce a fictitious iy
resistor R., in series with the grid g % %

of the noiseless tube shown in o

Fig' 5-4; the thermal noise volt- F1a. 5-4.—Equivalent input circuit.
age of R., at temperature T,

produces noise currents in the tube just equal to the combined shot and
partition noise in the actual tube. With this equivalent representation
of actual tube noise we are in a position to calculate the noise figure and to
examine the way in which the noise figure depends upon the various
circuit parameters.

Calculation of Novse Figure—The noise figure of the circuit shown in
Fig. 54 can be easily calculated if one remembers that the noise figure is
the ratio of the actual noise power output to that noise power coming
from the signal generator resistance at a temperature Ty (see Sec. 5-1).
The total mean-square noise voltage at the grid terminal is clearly

Go(f) &f = [““T"(é’g:g;? i;’;? s 4kToR,u] A, (35)

where m is the ratio of the effective temperature of g, (because of induced -
grid noise) to T [see Eq. (4.59)]. The noise that would appear at the
grid in an “ideal” condition, i.e., if the effective temperature of g; and g,
and R., were zero, is

4kT o Af
G Af = ——2—~ 36
DA =G+ o )
hence the noise figure F is given by
Fet4+® 40y B gyt (37)

1 These quantities are, in general, complex; however, for the sake of simplicity,
they will be assumed to be pure conductances. Residual susceptances can always be
tuned out with lumped reactive elements.
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The first constant (unity) comes from the thermal noise in the signal
generator itself; the remaining three terms, representing ‘‘excess’’ noise,
come from circuit losses (usually small), induced grid noise, and shot (and
partition) noise, respectively. Equation (37) can be written in a slightly
different way:

F—1=1[g+ mg, + Realgs + g,)" ; + ORunlgs + g0) + Ruag. (38)

This expression shows that as a function of signal-generator conductance
g, the noise figure {minus unity) has one independent term, one hyper-
bolic term, and one linear term. It is clear that (for small F) there is an
optimum signal-generator conductance; for this value of conductance the
first and third contributions are equal.

2114
Gopt = lg. + mg, +RR;:(gl + 90)% s (39)

and
Fopo — 1 = 2[g; + mg, + Rea(gr + 9P oo’ + 2Rea(g: + g,).  (40)

It is clear from Eq. (38) that a measurement of F' as a function of g permits
evaluation of all the quantities involved, namely, Re, ¢:, ¢,, and m.
J. L. Lawson and R. R. Nelson! have used this method with partial
success. The quantity R., can be obtained with good accuracy, but the
other quantities cannot usually be determined with adequate precision.
If circuit losses are small, ¢; can be neglected; this fact helps somewhat in
the determination of m and g,. It is usually more satisfactory, however,
to determine g, by direct measurement.

In practice, g; can usually be neglected. Furthermore, the contri-
bution from the constant term in Eq. (38) is ordinarily negligible. TUnder
these conditions the optimum noise figure (—1) depends linearly on the
square root of the grid electronic loading conductance g, [see Eq. (40)].
We saw in Sec. 4-10, however, that the electronic loading conductance is
(for small transit angles) directly proportional to the square of the
frequency; therefore it would be expected that

Foe = 1 4 Kf, (41)

where k is a function characteristic of the particular i tube. This
relationship has been roughly verified by J, L. Lawson and R. R. Nelson,
using a triode-connected 6AKS5. They measured the noise figures at
6, 30, and 60 Mc/sec and found values of 1.06, 1.3, and 1.7, respectively,
fOI' F opts

Role of I-f Input Coupling Transformer.—It seldom happens that a
signal generator (or the i-f terminals of a converter) has the optimum

1 Unpublished.
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conductance given by Eq. (39); a transformer is generally used, therefore,
to change the effective generator impedance to the most suitable value.
If the transforming network is lossless, we may simply view ¢ as the trans-
formed generator impedance. Losses in the transformer must be lumped
with g;; if this is done, the preceding development is valid and noise
figures are easily calculated. It is obvious that the optimum (for
optimum noise figure) transformed generator impedance is not generally
equal to its load; i.e., impedance matching is not generally desirable.

In spite of the fact that the input coupling transformer is used for
‘proper impedance transfer, it sometimes happens that, because of the
input shunt capacitance of the tube, the circuit bandwidth is insufficient
for the intended use. In this case a compromise between bandwidth
and noise figure must be made; this compromise, however, is not usually
sertous. For instance, in the example just mentioned, i.e., triode-
.connected 6AKS5, the optimum noise figure occurs when the circuit band-
width is approximately 0.25 the center (intermediate) frequency. A
larger bandwidth would hardly be useful in view of the difficult problem
of adequately separating i-f and video voltage at the second detector.

Experimental Measurement of Noise Figures—The noise figure of a
receiver can be measured in many ways; however, the straightforward
methods involving a direct comparison of the total equivalent noise power
with a minute c-w signal power involve the difficult task of knowing
accurately the power of the extremely minute signal. This task becomes
especially difficult at high frequencies, where good attenuators are
difficult to construct. There is a method of measuring noise figures
which does not involve c-w signals and attenuators; it consists essentially
of a comparison of “normal” noise (generator at temperature Tp) with
the noise occurring when the generator is artificially changed to a new
temperature. This change in temperature is most easily effected by
impressing diode shot noise (temperature-limited) on the generator
resistance.! Let us consider the case where a measurement is made of the
d-c diode current I that just doubles the original receiver noise.

The original receiver (available) noise power is simply F (the noise
figure) times the noise contribution arising in the generator resistance
itself [see Eq. (5)], which is now to be set equal to the contribution of
noise from the test diode operating into the generator resistance B,. The
available shot noise power W, (per unit frequency interval) will be given
by the Schottky formula [Eq. (4:28)), together with the generator

resistance R,:
elR,

2

1E. J. Schremp showed (in December 1942) the validity of measuring noise figures
by means of diodes.

W, =

Af, (42)
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which must be set equal to the original receiver noise power, i.e., FkT,Af.
Therefore,

_ elR,
F= HT, (43)
which, if T, is set equal to the “standard” figure of 292°K, reduces to the

simple expression
F = 20IR,, (44)

where I is that d-c¢ diode current in amperes which just doubles the output
noise and R, is the generator resistance in ohms. In this fashion the noise
figure is easily and accurately measured without recourse to long-range
attenuators and complicated methods of accurate power measurements.
The only precaution that must be taken is to ensure that the only source
of noise from the diode is the one given by the Schottky formula; this
appears to be the case when a temperature-limited tungsten or thoriated-
tungsten cathode is used in a diode of good geometry. Diodes having
oxide cathodes have proved to be somewhat unreliable, for what precise
reason is not yet known. '

Another (and less accurate) method of measuring noise figures is
physically to change the temperature of the generator resistance R, and
to plot the over-all noise power as a function of temperature. The
thermal noise from R, should be linearly proportional to the temperature,
whereas the excess noise contributing to (¥ — 1) [see Eq. (7)] is inde-
pendent of the temperature. The zero-temperature (extrapolated) noise
is the excess noise power, which can be divided by the thermal noise at
temperature T, to yield the quantity (F — 1). An experimental plot
showing noise power as a function of temperature is reproduced in Fig. 5-5.
The data were taken by R. R. Nelson and J. L. Lawson at an intermediate
frequency of 6 Mc/sec using a triode-connected 6AKS5 at approximately
optimum generator resistance [see Eq. (39)]. The noise figure determined
by the plot is 1.07, which substantially agrees with the value of 1.06
determined by a diode measurement.

Pentode vs. Triode Amplifiers.—We have seen [Eq. (40)] that the best
noise figure available depends upon several factors that are functions of
the particular tube used. We may ask how these quantities differ in a
triode and pentode; indeed, we may ask how the optimum noise figure
depends upon operating a given tube as a pentode or as a triode. With a
given tube the only quantity appearing in Eq. (40) that differs with
pentode and triode connection is R.; the equivalent noise resistance is
always higher in a pentode because of screen-grid partition noise. It is
easy to calculate R., for a triode. We have seen from Eq. (4-50) that the
shot-noise voltage fluctuation in the plate is exactly equivalent to a
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voltage fluctuation in the grid circuit (of a noiseless tube) equal to

0 4kT,

T Gm

Gv(f) Af =

af, (45)

which is also equal to the equivalent voltage generated by R., i.e.,
4kTyReq Af. Therefore,

e 46)

If appropriate values for an oxide-coated cathode are assigned to 8, g,
and 7., we obtain the simple formula

Reg = —- “n

In a similar fashion the equivalent noise resistance R., can be calculated
for a pentode connection,

1
Rualp) = (1 +870 12 ‘}O") Ruull), (48)
m c e»
where R.(f) is the equivalent resistance of a triode-connected tubd *
operating with identical space current. It will be noticed that becausd
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of the screen-grid collector current I,, the pentode noise always exceeds
the triode noise. For this reason amplifiers that are to have a very low
noise figure should be constructed with an input triode stage.

Equations (47) and (48) are given, together with a number of other

e w
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useful relations, by Harris.! He has verified them experimentally in a
large number of cases.

Suppression of Induced Grid Noise.—It has been assumed hitherto in
the discussion that the various sources of noise that have been considered
are independent. This ascumption, however, is not valid; the same
electrons that produce fluctuations in anode current (shot noise) induce
noise currents in the grid. It was shown in Sec. 4-10 from the form of the
current pulses produced by a given electron at the grid and anode that
the two noise contributions are substantially in quadrature, provided the
effective load attached to the grid is resistive. In this case the noise
powers from the two sources can be added as though they were inde-
pendent. If the grid load is reactive, however, the grid-current pulse
will produce a grid-voltage change having components in phase or out of
phase with the anode-current pulse. It is natural to ask whether or not
this circumstance can be used to cancel out part of the shot noise with
part of the grid noise. From an analysis of the phases involved, this
cancellation might be expected to occur when the grid reactance is
capacitive or, in other words, when the resonant frequency of the grid
circuit is lower than the intermediate frequency chosen for measurement.
Experiments by R. R. Nelson and J. L. Lawson have shown that at 30
Me/sec, the noise figure of a triode-connected 6AKS5, measured with a
fairly high-resistance generator (making induced grid noise evident)
is best when the grid circuit is tuned to a somewhat lower frequency
than the noise measurement frequency. This observation corroborates
the cancellation picture. Unfortunately these experiments were dis-
continued before it was ascertained how much cancellation could be
effected.

In a similar manner simple analysis indicated that reactive feedback
from anode to grid could accomplish the same type of result. It was
expected that inductive feedback would accomplish some cancellation;
this was experimentally verified by R. R. Nelson and J. L. Lawson.
However, more experimental evidence is needed to establish the degree to
which these noise contributions can be canceled.

5-6. Noise Cancellation Schemes.—We have seen in two cases, i.e.,
local-oscillator noise and induced grid noise, how noise normally present
in a receiver can be reduced or eliminated by circuit ingenuity without
at the same time proportionally reducing the desired signal. It is of
great importance to learn when noise cancellation is possible and when
impossible.

The elimination of local-oscillator noise appears to be possible only

1'W. A. Harris, “Fluctuations in Vacuum Tube Amplifiers and Input Systems,”
RCA Rev., b, 4, April 1941.
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because one can operate on the local-oscillator noise energy independently
of the signal energy. In other words, the source of noise does not cause
it to appear initially on the same two terminals as the signal. Likewise,
in the case of induced grid noise, the noise behavior at grid and anode
(from the same source) is substantially different from the signal
contribution.

It seems, on the other hand, that cancellation is not possible if the
extra noise is generated at the same terminals as is the signal. In this
case any noise cancellation scheme should also and to the same degree
cancel the signal. This consideration will apply, therefore, to signal-
circuit losses, crystal-mixer losses, etc. For these effects, the only hope
for lower noise lies in improved methods of construction, lower
temperatures, ete.




CHAPTER 6
EXTERNAL NOISE SOURCES; CLUTTER

6-1. Origin and Description of ‘Clutter.”—The term ‘‘clutter” is
used to describe signals reflected from such objects as rain, “ window” or
“chaff,”! vegetation, and the surface of the sea. The inclusion of clutter
in a discussion of noise is justified by the similarity, though superficial,
between the appearance of clutter on an A-scope and that of noise on an
extended A-scope and by the close similarity of their mathematical
treatment. The chief difference between clutter and noise is that whereas
there is correlation in clutter received during a number of consecutive
pulses, noise is completely independent from pulse to pulse.

The mathematical description of clutter is based on the assumption
that it is caused by reflections from a large number of independent and
independently moving scatterers, (e.g., strips of window, raindrops).
With this model statistical predictions can be made of the power received
as a function I(r) of range? when the pulse travels through rain or window,
etc. These considerations have led to predictions concerning the appear-
ance of individual traces on the A-scope.? Furthermore, the power 7(t)
returned from a region at fixed range can be considered as a random
function of time. This function is actually observed only for a discrete
set of values of the time variable, that is, once for each pulse. Experi-
mentally the function I{¢) is obtained from these discrete observations by
interpolation using a ‘‘boxcar” device (¢f. Sec. 2-7) and a low-pass filter.
With the commonly used PRF’s the function I(f) thus obtained is
sufficiently well represented for comparison with the theoretical
predictions.

Both I(r) and I{{) are random functions. Even if the average number
and cross section of the scatterers do not depend on range, I(r) fluctuates
because the phase relations between the scatterers contributing to the
return are different in different regions of space.

Fluctuations in I(f) occur because the phase relations of one assembly

! These terms have been used to describe a large collection of thin metallic strips,
used as a jamming device.
? Experimentally, the function of range is obtained as a function of time on a
microsecond scale with range = ¢/2 X time.
3A. J. F. Siegert, “On the Appearance of the A-scope When a Pulse Travels
through a Homogeneous Distribution of Scatterers,” RL Report No. 466, Nov. 9, 1943.
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of scatterers change with time because of the random motion of the
scatterers. The changes of intensity arising from the statistical fluctua-
tions of the number of scatterers can be neglected, since they are small
compared with the fluctuations due to changing relative phases when the
average number of scatterers contributing to the clutter is large. Clutter
is therefore considered as the return from N scatterers where N is merely
the average number of scatterers and not a random variable.! The
r-f signal received from the kth individual scatterer is denoted by

Zx €08 2mfol + yi sin 2nfol,

where f, is the carrier frequency.

The signal intensity zi 4+ y? depends on the field strength at the
scatterer and on the distance from the scatterer to the receiver. The
total power received is given by I(¢t) = X2(t) + Y?2(t), where X = Zz,,
and Y = Zy,. The phase tan—! (y;/z:) depends mainly on the distance
from the scatterer to the receiver. The z; and y, may be functions of
time for the following reasons: (1) The field strength at the point where
the scatterer is located may change, for example, if the scatterer moves
out of the illuminated area; (2) the scatterer may change its cross section
(““chaff,” sea return); and (3) the distance between transmitter and
scatterer may change. The first cause will be disregarded, since the
number of scatterers entering and leaving the beam is usually small during
a continuous series of observations (several thousand pulses). The
second cause will also be neglected, since the rotating motion of the
““chaff”’ is slow and does not affect the phase. In sea return, too little is
known about the scatterers to make reasonable assumptions for the
purposes of calculation. The third cause has been studied extensively
as far as phase changes go. Intensity changes brought about by changes
of distance are so small and so slow that they can be neglected.

Besides assuming N to be large, it will be essential to assume that the
amplitudes received from the scatterers are independent of each other.
This assumption will be discussed in more detail along with the deriva-
tions of the first two probability distributions W.(I) and W.(Z1,1s,0).

6-2. Derivation of the First Two Probability Distributions.—To obtain
the first probability distribution W (), the distribution W (X,Y) 1s first
calculated for the components

1 For distances r from the transmitter that are large compared with the pulse
length,
2

where n is the average number of scatterers per unit volume, 6 the beam width, = the
pulse duration, and ¢ the velocity of light.
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N

N
X=Zxk, Y=2yk
k=1

k=1

of the total field received from N scatterers, assuming a given probability
distribution w(x,yx) for the field received from the kth scatterer. The
assumption of one distribution for all scatterers can be justified, even if
there are several classes of scatterers, e.g., raindrops of various sizes.
It is assumed further that the return amplitudes from different scatterers
are independent, that is, that the probability of receiving z, ¥, from the
kth scatterer and x,, y; from the lth scatterer is given by the expression

w(zk, Y w(z,y)).
This assumption is justified if the N scatterers represent a sample con-
taining large numbers of scatterers of each class.!

It is clear that under these assumptions the problem of finding
Wwn(X,Y) is nothing but the two-dimensional random-walk problem,
treated in Sec. 3:6. With the additional assumption that w(z,y) is
isotropic, and hence

1
w(z,y) dz dy = 5 f(r) dr d¢,

we obtain, within an error of the order of magnitude 1/N, the Rayleigh
distribution

1
wWiI)dl = Qe L, (1)

where Iy = N7? is the average power returned by the N scatterers.

To derive the joint probability of obtaining return signals of power
I(t)) =1, and I(t;) = I, a time ¢t = {, — t; apart, the probability
W(X1,Y1,X,Ys) is again first derived for the components of the total
field received from all N scatterers at the times {; and £,. It is assumed
that the return signals from all N scatterers are received simultaneously
at both instances of time. As long as I; and I, are observed at the same
range and without turning the antenna, this assumption is justified,
since the number of seatterers drifting into and out of the region from
which the signals are received during the time { is small compared with N.

The probability of receiving amplitudes z{¥, ¥ at time ¢, and a4,
¥ at time ¢, from the kth scatterer is denoted by 7(z{, y{®; zi», y‘"”).2
The scatterers have been assumed to be independent; that is, the proba-

LIf there were, for instance, only ‘a few scatterers of large cross section among
many of small cross section, the knowledge that the return signal from the kth scatterer
is large would diminish the probability of observing a large signal from another

scatterer.
2 The probability w(z®, yﬁ”) used above is related to this function by

wa?, 1) = Sfrlal®, ufP; 2l yi) datd dyald.
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bility of receiving the field z{P, y{; 2, y{» from the kth scatterer and
zP, yP; 29, yP from the Ith scatterer is assumed to be 7 (z{®, y§; 2, y)
(zf, y; I‘z”, ¥).

The fact that a whole cloud of chaff, for instance, may be carried by
the wind so that the average velocity of the particles is the same does not
contradict the assumption of independence.

The probability for the initial phase ¢; = tan—! (y1/x1) is assumed to be
independent of ¢1. The unconditional probability for ¢; = tan—! (y./x.)
is also assumed independent of ¢, whereas the conditional probablllty
for @9, With given ¢,, depends on ¢ = ¢, — ¢1. The averages i, 11, T2,
y2 are therefore all equal to zero.

Assuming that u, the velocity component of the scatterers parallel
to the line of sight, does not change during a time ¢, which in the experi-
ments is less than about 1's sec, we have ¢ = (4r/Nut.

The absolute value of the field received at ¢, ro = vz + 32 is
assumed! to be the same as the value for ¢, 71 = V2 + 2

Under these assumptions the joint probability for the amplitudes may
be found by the method explained in Sec. 3-6 or by Chandrasekhar;? and
omitting terms vanishing for N — «, we obtain?

WoXs, Y, Xs, Vo, £) = (2%)4/// /dsl dny dtx dns

exp [i(X,El + Y + Xobs + Yomo) — % @1E1 + ym + 7285 + yoma)?
(2

with
(1861 + yim + Z282 + yom2)?

= // / / dzy dyy dze dye (161 + yim + 2282 + yone)?
T(xl;ybx2yy2) (3)

1 For window, these assumptions mean that changes of return power and phase
caused by rotation of the strips during the time ¢, — ¢, have been neglected. Accord-
ing to the expressions derived by F. Bloch, M. Hamermesh, and M. Philips (“ Return
Cross Sections from Random Oriented Resonant Half-wave Length Chaff,” RRL
Report 411-TM-127, June 19, 1944), the phase of the returned field is actually inde-
pendent of the orientation of the strip. Since the time intervals over which the
experiments extend are small compared with the rotation time of window strips,
neglect of the intensity changes brought about by changes of orientation during the
time £ is justified. The dependence of return power on the initial orientation is taken
care of in the probability distribution, of course.

8. Chandrasekhar, “Stochastic Problems in Physics and Astronomy,” Rev. Mod.
Phys. 16, 1-89 (January 1943).

3 For further details of the derivation see A. J. F. Siegert, “On the Fluctuations in
Signals Returned by Many Independent Scatterers,” RL Report No. 465, Nov. 12,
1943, The fact that assumptions made in this report are more special than those
above does not affect the expression for W.
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where

by
(T, Y1,Z2,Y2) A1 dy1 dxs dy: = w(ryu) dr o dod(r? — r3)2ry dr, l-iz%l 4)

withu = 4—:_—': (¢2 — ¢1). The ranges of the variables are

0<rrns® —»x=<¢=+w, 054 <2
In the foregoing expression, w(ry,u) dr, du is the probability that a
gcatterer returns a field between r; and r; + dr;, and its velocity com-

ponent away from the transmitter lies between » and u + du.
Straightforward calculation leads to the expression

R S
=131 — ¢%)
exp( ; (11 5| X1+ YE+ X3+ V]~ 2(Xu(Xacos ¢ + Yasing)

Wz(Xl, Yl,Xz, Y2yt) =

LY~ Kising + Facos )} ), (5)

with
Io = NT%,

a L]
73 = /(; r} dr1/ w(ryu) du,
—w

. 1 < = .
gev = :2[] r¥dr, /_ w(ry,u)ed /A dy,

ry ©
where g is real and positive.
For the distribution of intensities [, = X3 4+ V2, I, = X2 + Y2 we
obtain

dldl, s [2ig \/ﬁz]

T3 - Lai-g¢) ©

Wg(Il,Ig,t) dIl dlz =

where ¢ is given by

1 = o« 3 p2(4i/M)ut
9=5 ridr w(r, u)etm dul = e | )
ril/e —w i

and Jo is the Bessel function of zero order. It is noteworthy that g cannot
become negative and that only g appears in the final result; the phase
angle ¢ has dropped out.

The relation between Wy and W, is easily verified:
/; dls Wo(I1,I1t) = Wi(l1).

For the average product there is obtained

m=ﬂ ﬁ WaluIOhLedl dl, = B+ ¢, ®)

e

&

[
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which, for ¢ = 0, leads to the result 72 = 2I2 derived above, since g(0) = 1.
The result for I.7, can be used to determine g* experimentally from
observed values of I(¢), since

9 =Jr-p 9

The following special cases, though not realized experimentally, may
give some insight into the qualitative behavior of the correlation function
g*(t), especially into its dependence upon the velocity distribution of the
scattering centers. If it is assumed that all scatterers return a field of
the same absolute value r; = p, that all directions of motion are equally
probable, and that the speed distribution is ¢(v) dv, Eq. (7) yields

-1 ’/ q(v) dv / sin 6 dg et=it/Mv e b
21/o 0
© . (41rvt)
sin T
v) dv ———2%| 10
q(v) ( ™ t) (10)
0 —_—
A
If all horizontal directions are equally probable, if the speed distribution

is again q(v) dv, and if the radar cross section of a strip is not correlated
with its direction of motion, we obtain

— le(um)m

1|/ i e
- d Ay eU4rit/ ) veon ¥
0= | s a [T ave
| s (s2) o0
0 A
If in addition all particles move with the same speed vo, we get
g = Jo (Lde>‘ (IOb)

Correlation between r; and u could occur, for example, if the strips
glided through the air in a direction perpendicular to their long axes,
since r; depends on the orientation of the strip. The correct formula for
this dependence leads to a rather involved integral. It can be seen
qualitatively, however, what will happen if the above hypothesis is
correct: The particles moving in the line of sight contribute most, and the
picture is essentially equivalent to two clouds, one moving away from -
and one moving toward the transmitter, with velocity distributions
centered about Fwv,. If an equal number of particles move in both
directions, we may write w(u) = 3[f(u — vo) + f(u + vo)] and we obtain
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= %l/_: [fu — vo) + flu + vo)letmi dy

g
= % (e(4ri/)\)vo + e—(m‘/x)vo) / f(v)e(h'i/)\)vt dv,
g = |cos 4”:0‘ / f)eti o™ o). (11)

The normalized spectrum F(w) of I — I, is obtained from the Wiener-
Kintchine relation

Flw) = ?rﬁ g? cos wt dt.

It should be noted that for all values of w,
F(w) £ F(0), (12)

since g¢2(t) is always positive. This inequality does not exclude the
possibility of F(w) having maxima as long as these maxima are not larger
than F(0). The spectrum can also be expressed by means of w(r,u) as
follows:

Fw) = 1_2r ﬁ g2(t) cos wt dt = 7% /_ g2 (t)e™ dt,

since g% is an even function. Substituting for g we find

Flw) = % f_: du S(u)S <u + Z_‘;) (13)

where

S(u) = ;% ‘An r? dr w(r,u) (14)

;'_2=/ du/ r2 dr w(ru).
—» 0

Thus S(u) du is that fraction of the received power that is returned by
scatterers whose velocity component away from the transmitter lies
between u — (du/2) and u 4+ (du/2).

6-3. The Probability Distributions When a Constant Signal Is Present.
Although the theory developed up to this point adequately describes
the clutter caused by window and rain, it has to be modified for
vegetation. Here there is usually a constant signal returned from
motionless objects such as rocks. tree trunks, and cliffs together with the
clutter from moving objects such as leaves and branches. This dis-
tinetion is, of course, somewhat dependent on wind velocity, and the type
of return received from the same wooded slope has been observed to vary

and

R
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from a nearly steady signal on a windless day to clutter with small
constant signal on a stormy day.

In the presence of a constant return, the voltage in the r-f or i-f stage
is given by X, cos € + Y, sin @ = (X 4 8) cos @t + Y sin @, where S
cos Qt is the fixed signal, X cos @t + Y sin Qf the random signal, and X
and Y are Gaussian random functions as described above. The proba-
bility distribution for the total amplitudes at a chosen time is, therefore,
given by the expression

dX,dy, el ke 2 4

Io
7!'10 ’

WX,Y,)dX,dY, =

where I, is the average power of the clutter, I, = X? + Y2. By intro-
ducing polar coordinates X, = I, cos¢, Y, = I, sing and integrating
over the polar angle ¢, we obtain, for the probability distribution of the
power I, = X% 4 Y}

Wity dr, = Lo Jo( S‘/I) (15)

Iy
The average power is given by
=X+ 82+ Tt=T+2X5+ 3¢
=1, + 8, (16
since X = 0.

The joint probability distribution for the total amplitudes X,i, Y,
X,:, Y., observed at two instances ¢ and ¢ = {; + ¢ is given by the

expression
WaolXo, Ya; Xas, Yar; i) dX 1 dX 2 = 28 %811 ngaz)dYaz exp
Il —

_ Xa=8)24+ Y+ Xn—8)+ V5 —20((X0—8) (X —=8)+VauVul|
10(1 - 92)

(17)

where g is the correlation function of the clutter amplitudes defined in
the preceding section. The joint probability for the power 1. = I,(t1),
I, = I,(t,) has not been obtained in closed form. The average product
T..I.; can be found, however, without explicit integrations in the following
manner: We have

LI, = (I +2X.8 + 85(: + 2X,5 + 8%
= (1 + ¢gO)I3 + 28(X I, + Xo0h) + 2105 4 29108% + S84

since X = 0, X:X, = gl,/2. Since the clutter is symmetrical in time,
we have X I, = X,I;. We write
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Fig. 6-1.—Film strip
showing successive sea
echoes.

Xoly = [gX1 + (X: — gX1)] [XT + VY]

and note that since X, — ¢X, is independent of
X1 and Yx,

Xoly = gX7 + ¢X\173
+ (X2 — gX1) XTF Y7 = 0.

We therefore have

I.,]J'z = (1 + gl)lg + 2(1 -+ g)IoS2 + 84
For the special case that ¢; = ¢;, this becomes
' T = 21 + 41,8° + 84,
and the correlation coefficient is found to be

Talo — T _ g*Lo + 248°
-1 L+ 28
when the signal-to-clutter ratio increases from 0
to «, the correlation coefficient increases from g2
to ¢ and not to unity as might at first be expected.
6-4. Experimental Techniques for Clutter
Measurements.—The main features of clutter that
are of interest are the spatial distribution of scat-
terers and the rate at which the total reflecting
power of these scatterers varies. A technique for
measuring these quantities by photographing suc-
cessive sweeps on an A-scope has been used suc-
cessfully by the Wave Propagation Group,
Radiation Laboratory.! A photograph of a single
trace on an A-scope yields information concerning
the spatial reflection of objects provided a simple
calibration of the deflection sensitivity of the A-
scope is made. Successive photographs of sweeps
that recur after short intervals show the time vari-
ation of reflected intensity at any point. Figure
6-1 reproduces a strip from a typical film showing
sea echoes recorded on a 9.2-cm radar system.
The interval between traces is 3 msec, and the
sweep length is 1500 yd. For convenience in
reference each frame area is provided with an iden-
tification number obtained by photographing a
t For complete details of this method see Vol. 13 of
the Radiation Laboratory Series.

(18)
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synchronized counter. The prominent pulse on the right is a saturated
artificial echo pulse, 1 usec long, obtained from a signal generator. Fig-
ure 6-2 shows some typical calibration curves for the A-scope deflection
in percentage of saturation plotted logarithmically against signal level
in decibels. The horizontal scale for each receiver gain sctting has been
shifted so that the values all coincide at deflections of 0.6 saturation. At
high-gain settings the deflection calibration is influenced by noise; the

100

S 88 83
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-

The ratio of video level to saturation
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Fic. 6-:2.—Deflecvion calibration curves.

convention has been made to measure the deflection to the average value of
the echo (or signal) plus noise. '

The first probability distribution is obtained by dividing the intensity
scale into a number of adjoining intervals and recording the number of
measurements falling within each interval. The fluctuation rates are
obtained from the correlation function, which has been defined for an
infinite sample as [¢f. Eq. (9)]

_POPCTD — (P

P — (P)?
For a finite sample (N traces) an observed correlation function can be
defined as

p(7)

(19a)

pobs(n) = —1=1 A=, (19%)
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where the correlation time = has been replaced by the more convenient
experimental parameter n defined equal to r/7, where T is the time
interval between successive measurements (sweeps). It will be noticed
that the evaluation of pw. requires n measurements outside of the N
samples; however, in a practical case these ‘‘excess” measurements can
be made as small as a few per cent of N.

10

p(T. R)

ol v 1y P s il

0 4 8 12 16 20 24 28 32 36 40
T in milliseconds

Fia. 6-3.—Typical correlation function.

In obtaining po. from actual film data certain peculiarities are notice-
able. For example, Fig. 6-:3 shows a typical correlation function pa,
plotted against 7 or, equivalently, n. The true correlation function p
should, of course, be identically unity for + = 0; however, in Fig. 6-3
extrapolation of the curve back to r = 0 gives a value substantially less
than unity. This discontinuity at the origin is caused by the presence
of a small amount of receiver noise, which of course is completely random
from sweep to sweep. The effect of the noise is easily calculated. The
first probability distributions for noise alone and for clutter alone are
similar and are given by Eq. (1). If one remembers that the noise is
uncorrelated, one can easily calculate the combined power and correlation
functions of the clutter plus noise. These are

Fc+N = Pc + PN,
representing simple addition of power, and by Eq. (19a)
(P.)?

Pe+N Pe (Pc T PN)Z

The fact that the correlation function in the presence of noise is related

to the correlation function in the absence of noise by a simple known

factor makes the determination of the correct p. extremely simple.
Another peculiarity of Fig. 6-3 is indicated by the very slow approach

to zero for large values of . This indicates slow secular changes in the

>
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average power P.. This fluctuation is nearly always very slow compared
with the fast Doppler beat arising from the velocity distribution of the
scatterers. A rigorous treatment of this case would appear to be quite
difficult, since it is no longer a stationary process. However, a first
approximation can be obtained as follows: Divide the sample of N
values into groups each containing m measurements, each separated by
a time interval 7. The quantity mr is long compared with the periods of
Doppler fluctuations but small compared with the period of the secular
variation in power. We may now define correlation coefficients for the
various subgroups; for example, by analogy with Eq. (19a),

m

R
-3

1=

(pi)obs =

These correlation coefficients are presumably independent of the average

. power and of the particular subgroup. The over-all pos can be computed

by Eq. (19b); and if the Doppler fluctuations are Gaussian, one can relate
the over-all poe to the (p;)obs as follows:

[1 + (p)owl P} — (Po)2
2P% — (P,)?

Pobe =

where the curly line denotes an average of the subgroup power _ ; over
the various groups. It is seen that as p; approaches zero, po» approaches
a value different from zero, which can be written

62

l]m Pobs = 1—*——26&’

7= 0
where § is the standard deviation of the distribution for Po. It should be
mentioned that in addition to the correlation function the first proba-
bility distribution will also be affected by the secular variation of P,.

The standard deviation for P is no longer unity but /1 4 &2

Even though the corrections are made for receiver noise and secular
clutter variations the observed corrected correlation coefficients usually
fluctuate erratically for large values of r. This difficulty is usually
caused by statistical fluctuations produced by the finite size of the sample.

In order to tell if experimentally observed deviations from theoretical
distributions are significant, it is important to know the magnitude of the
experimental errors involved. Three types of errors may be distin-
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guished: the fluctuations due to the finite size of the sample, the errors in
reading the film, and the errors in calibration.

The fluctuations in the number of measurements falling within a
given intensity range are distributed according to the well-known Poisson
distribution. The rms fractional deviation is 1/+/n, where n is the
expectation value of the number of measurements, providing » is small
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F1a. 6-4.—Experimental and theoretical first probability distributions (for chaff).

compared with the size of the sample N. It must be remembered that
this assumes independent trials. Normally there is correlation between
successive measurements, and » must be replaced by »n’, the number of
independent measurements.

Errors in the reading of the film may be either systematic or random.
It is difficult to estimate a systematic error. However, a known source
of random error is usually present. Depending upon the computer and
the nature of the trace, there is an error in measuring the deflection,
ranging from 0.05 cm to several millimeters, but usually around 1 mm.
Consider now an interval equal to the minimum measurable difference,
centered about the deflection corresponding to the boundary between
two deflection groups. Of the pulses falling in this interval zone, some,
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by chance, will be assigned to one group and some to the other. The rms
fluctuation of the number in a group, due to such an ‘“uncertainty zone”

at one boundary, is given by 4 /m where m is the total number of
measurements falling in the uncertainty zone.! Note that m includes all
measurements falling in the interval, since all trials are independent.
6-5. Experimental Results. Chaff.—Since chaff, or ‘“window,” is
composed of a large number of randomly moving dipoles, it is ideal to
use for comparing experiment with theory. Figure 64 compares a
typical experimental first probability distribution, taken at a wavelength
of 9 ecm, with the theoretical exponential curve. The histogram repre-
sents the analysis of 1000 pulses, and the straight line corresponding to
the theoretical curve uses the value of the measured average intensity of
the sample analyzed. The deviations between the two plots are random
and do not indicate any significant differences.
TasLE 6:1.—DEVIATIONS BETWEEN THEORETICAL AND EXPERIMENTAL First PrOB-

ABILITY DISTRIBUTIONS
Chaff A =92cm 1000 pulses

No. of pulses in interval i
Interval of Expected | Fluctuation
P Experimen- Difference rms due to {in No. border
Py Theoretically finite sample error
tally
(1) 2) (3) 4) (5) (6)
0 -0.34 275 292 -17 14 3
0.34-0.68 205 206 -1 13 4
0.68-1.01 143 146 -3 11 4
1.01-1.35 136 103 +33 9 3
1.35-1.69 79 72 + 7 8 3
1.69-2.03 47 54 -7 7 3
2.03-2.36 32 37 -5 6 2
2.36-2.70 21 26 — 5 5 2
2.70-3.38 35 31 + 4 5 2
3.384.05 14 16 - 2 4 1
4.05-5.40 9 12 + 3 3 1
5.40-8.43 4 4 0 2 1

Table 6-1 compares the magnitude of the deviations in each interval
with the expected rms fluctuations due to the finite size of the sample and
“border error”’ as discussed in Sec. 6-4. In Column 5 it has been assumed
that all the measured pulses are independent of each other. Since there
is actually considerable correlation between neighboring pulses, the

1 The reasoning employed is as follows: It is equally likely that a measurement will
be assigned to either group. The average number going to any one group is m/2.
The rms fluctuation jn this number is v/m/2(1 — 3) = 3 v'm.
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figures in Column 5 represent minimum values. The “border error”
calculation assumes that differences in the pulse height of less than 1 mm
were not measurable, which is likewise a minimum figure. It is seen that
the actual deviations are, with one exception, well inside the expected
statistical fluctuations. Equally good results have been obtained in all
measurements of chaff cut for A = 10 ¢m and observed on A = 9.2 and
A =32 cm. The first probability distribution of the echo on 515
Mec/sec of chaff cut for the “Wurzburg” band (A = 50 c¢m) has been
measured at Radio Research Laboratory and good agreement was likewise
obtained with theory.!
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F1a. 6-5.—Frequency spectra for chaff,

The shapes of the frequency spectra of the fluctuations of chaff echo
have always been found to be roughly similar, resembling error curves
centered at the origin. The widths of the spectra, however, are quite
variable even at one wavelength. For example, Fig. 6-5 shows the spectra
for the echo of chaff cut for X = 10 cm, as measured on A = 9.2 ¢cm on
four occasions. It is significant that the widest spectrum D was obtained
with gusty winds up to 25 mph while wind speed was 10 mph or less for
the other cases. The width of the spectrum depends upon the relative
velocity of the chaff dipoles, i.e., the so-called ‘‘horizontal dispersal
rate,” and it is to be expected that this rate depends on the speed and
gustiness of the wind.

The narrowest spectrum, Curve A, was obtained with chaff of the
same electrical properties as used for the other curves but with slightly
different mechanical and aerodynamical properties. In addition the

1G. P Kuiper, “A Study of Chaff Echoes at 515 Mec,” RRL Report 411-73,
December 1943.
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chaff was dispensed from a slow-moving blimp instead of into the rela-
tively turbulent slip stream of an airplane.

It is not believed that there is any significant dependence of the
spectrum on the ‘““age’ of the chaff, i.e., the length of time between the
initial drop and the measurement. The ages for the four curves 4, B, C,
D of Fig. 6-5 are 3 min, 20 sec, 6 min, and 10 min, respectively.

If the fluctuation arises solely from the Doppler beats of the moving
chaff dipoles, then it is seen from Sec. 6-2 that the correlation function is
a function of the quantity v/X that is, the dispersal velocity divided by
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F1G. 6-6.—Spectrum of chaff for 2 wavelengths.

the wavelength. Hence the width of the frequency spectrum of the
fluctuation should be proportional to the radar wavelength for the same
velocity distribution. More exactly, if simultaneous measurements of the
frequency spectra are made on several wavelengths, the curves should
coincide when plotted as functions of the product of the fluctuation
frequency and radar wavelength. Accordingly in Fig. 6-6 the experi-
mental frequency spectra for chaff measured simultaneously on A = 3.2
and 9.2 cm is plotted against the product of frequency and radar wave-
length. The small discrepancy between the two curves is well within
experimental error.

The frequency spectrum of chaff has also been measured at 515
Me/sec!, and the maximum frequency present to an appreciable extent
was found to be 4 cps on horizontal polarization. When “scaled” to
A = 9 mm this value roughly corresponds to Curve A of Fig. 6-5. Con-
sidering that the chaff size was different, the wavelength dependence
is at least qualitatively verified. (The frequency of fluctuation on

1 Ibid.
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vertical polarization was found to be somewhat slower, with a maximum
of 3 cps, whereas all the microwave measurements were made with hori-
zontal polarization.)

Mention must also be made of some results obtained in England on
the frequency of fluctuation that are not in agreement with the above
conclusions.! Pulse-to-pulse photographs of chaff echoes were made on
212 and 3000 Me/sec. A statistical analysis was not carried out, but it
is stated that there was qualitative evidence of fluctuation frequencies
in the range 10 to 25 cps on both frequencies.

If the spectrum and velocity distribution have Gaussian shapes, some
information about average speeds can be easily obtained. Let 7 be
defined such that one-half of the scatterers have relative velocities in the
direction of the radar set that lie between —% and +5. Then it is easily
shown that

5 = 0.2\fy, (20)

where X is the wavelength and fy, is the frequency at which the power
frequency spectrum is down to one-half of its original value. Applying
this formula to the curves of Fig. 6-5 (although they are not exactly
Gaussian in shape) values of 7 are obtained ranging between 0.6 and 2.0
ft/sec. These results are of the same order of magnitude as the hori-
zontal dispersal rate as actually measured from motion pictures of chaff
dipoles.

Precipitation Echo.—The scatterers responsible for precipitation
echoes are undoubtedly either raindrops or water particles in solid form.
One would therefore expect that the conditions for treating the target
as an assembly of random scatterers are well satisfied. Figure 6-7 shows
a typical experimental first probability distribution as obtained from the
analysis of 1000 pulses at A = 3.2 cm of the echo from a shower. The
deviations of the histogram from the theoretical curve (plotted as a
straight line on this scale) are random. An analysis of the deviations,
similar to that made for chaff echo, shows that they are within the
expected statistical fluctuations.

Unfortunately, only a small amount of data is available on the fre-
quency spectrum of the fluctuations of precipitation echo. Three films
were measured on X = 9.2 ¢m, and one on A = 3.2 cm, all for the echo
from shower or thunderstorms. The rate fluctuation appears to be
several times that for chaff. Figure 6-8 is a plot of the power frequency
spectrum for the three cases measured on 9.2 ecm. The shapes of the
spectra are roughly Gaussian except one case, where there is a pronounced
tail above 80 cps. It is doubtful, however, if this tail is significant.

! “Final Report on ADRDE Window Trials,” ADRDE Report No. 250, April
1944.
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The widths of the three spectra, given by fi, differ by as much as a
factor of 2. As in the case of chaff it is therefore not possible to speak of
the fluctuation frequency spectrum, but one must expect to find the
spectrum depending on the particular storm, probably varying even
within the storm region and changing with time. Additional evidence
for this variability is furnished by an attempted experiment on the wave-
length dependence of the fluctuation. Two films were taken of the echo
from a rain shower on A = 9.2 and 3.2 cm, respectively, separated by a
time interval of a few minutes and a range interval of a few thousand
yards. The fluctuation spectra, instead of being inversely proportional
to wavelength, were practically identical both in shape and width. It
is concluded that the rate of fluctuations can change by a factor of 3 even
over short intervals of time and space.

An average figure for the speeds of the drops relative to each other
may be obtained from Eq. (20), but one must use greater caution than for
chaff because of possible deviations from a Gaussian spectrum. Figure
6-7 yields values of 7 between 3 and 5 ft/sec. These relative velocities
should be connected with the turbulence existing in the regions of pre-
cipitation, and in this light the values seem low. It must be remembered,
however, that the turbulence in a storm is mostly vertical and the
fluctuation depends on the horizontal velocities. Furthermore the
velocity distribution is quite broad and extends far beyond .

Sea Echo.—A striking feature of the radar echo from sea is the pres-
ence of a secular variation to a much more marked degree than in the
case of chaff or precipitation echoes. However, if a time interval is
chosen in which the ““average” intensity is sensibly constant, then the
first probability distribution agrees with the theoretical exponential
curve.

The power frequency spectrum of the fluctuations of sea echo is again
roughly Gaussian in shape and about the same width as the spectra for
chaff. The range of widths encountered appears to be much smaller;
values of fi; between 25 and 35 cps occur for A = 9.2cm. Nodependence
of the spectrum on pulse length has been found. A comparison of the
fluctuation spectra at two wavelengths show that the value of f is
approximately inversely proportional to wavelength. This indicates
that these fast fluctuations are probably caused by moving random
scatterers. From the value of fi, it appears that the median relative
velocity 7 1s of the order of 1 or 2 ft/sec.

Ground Clutter.—The previously discussed targets could all be closely
approximated by assemblies of random, independent, moving seatterers.
Targets responsible for ground clutter also include such assemblies, con-
sisting of leaves, branches, ete., that move in the wind. However, in
addition there are scatterers with fixed phases, for example, tree trunks,
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rocks, etc. The total echo is the sum of the echoes from both classes of
targets.

Several first probability distributions for ground clutter have been
measured. They are found to agree with Eq. (15) if suitable values are
inserted for the reflected power from the fixed and moving scatterers
respectively. At a wavelength of 9.2 ¢m a heavily wooded hill subjected
to gusty winds of 50 mph shows almost no fixed contribution, while a
sparsely vegetated rocky terrain shows almost no random contribution.
One would expect the ratio of fixed to random power to increase with
wavelength; this has been qualitatively confirmed by experiment.

The shape of the spectrum appears to be roughly similar to those of
the chaff or sea echo, although the differences from the Gaussian shape
are somewhat more pronounced. The widths of the spectra, however,
are smaller by an order of magnitude than those of the other clutter
echoes. These widths naturally increase with wind speed and in addition
depend to some extent on the terrain. They also appear to be essentially
proportional to frequency. Representative values of fy; for a wavelength
of 10 cm are from 1 to 5 ¢ps. This indicates very small relative velocities
of the moving scatterers. _

6-6. Classification of Interference.—Examples of electronic inter-
ference are legion. A common one is the static in radio reception. To
understand the principles involved in the perception of signals in inter-
ference it is well to know the various types of electronic interference that
may be encountered. Electronic interference reduces the desired signal
visibility, either because of saturation within the receiver or because of
unavoidable mixing of the interference with the desired signal. In the
mixing process the identity of the signal will be destroyed if the elec-
tronic interference is sufficiently strong. In general, the interference is
more serious when its characteristics correspond to those of the desired
signal. This correspondence may consist of similarities in either power
spectra or time distributions. Likewise, methods for reducing the dele-
terious effects of interference are based upon the differences between the
desired signal and the interference. If the interference spectrum is
similar to that of the desired signal, then, in general, the differences in
time dependence are utilized. If, however, the time dependence is
similar to that of the signal, it is often feasible to take advantage of
differences in the spectra in finding suitable filters for the separation of the
desired signal from the interference. These matters will be discussed
in detail in Chap. 12.

1t is important to note, however, that the power spectrum of the
interference is not by itself an adequate criterion of its behavior. One
can appreciate this fact by observing that the spectrum of thermal noise,
such as was discussed in Chap. 4, is uniform throughout the frequency
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scale. The spectrum of a single, discrete, extremely short pulse is also
uniform and continuous throughout the frequency scale. The time
dependence of the thermal noise and the discrete pulse are entirely
different, however, and it is obvious how one can utilize this difference to
distinguish the two phenomena. True, if one uses the term ““spectrum”
in its exact sense, that is, including the phase factors between the various
frequency components, then the spectrum will be an exact description of
the phenomenon. It is usually customary, however, to speak of the
“spectrum” in terms of the power per unit frequency interval. This
neglects the phase factors, and therefore the spectrum is not a complete
description of the phenomenon.

As was stated above, the electronic interference may mix with and
cover up the desired signal. It is important to note, however, that the
signal may be lost through still another mechanism. The interference, if
sufficiently large, can cause the receiver to operate in such a region that it
is essentially saturated. Under these conditions the signal will be sup-
pressed just because the receiver no longer responds to incremental input
voltages. A more complete discussion of the saturation characteristics of
the receiver will be found in Chap. 12.

Interference may be variously classified, of course. For the purposes
of this book electronic interference can be conveniently put into only two
general categories. The first category comprises the simple forms of
interference; the second, the complex forms. Of the simple forms of
interference only two varieties will be discussed: e-w interference and
pulsed interference, that is, interference caused by a succession.of short
r-f pulses similar to the radar pulses discussed in Chap. 2. There are
obviously many types of complex interference, but only four gereral
varieties will be treated here. Three of these are forms of noise-modu-
lated r-f power, and the fourth variety is a series of ‘“‘randomized”
pulses, that is, pulses that occur at random time intervals. It is hoped
that other types of interference can be understood by interpolation,
superposition, and extension.

6-7. Simple Types of Interference. Continuous-wave Interference.—
Continuous-wave r-f energy has a spectrum that is essentially mono-
chromatic. Its characteristics are similar to those of the c-w signal
described in Chap. 2, for example, a constant-amplitude r-f wave.

One reason for the deleterious effect of c-w r-f interference is that it
mixes with the signal in random phase. This arbitrary phase relationship
between the interference and the signal causes the signal contribution in
the receiver to vary randomly in time. In addition to this phenomenon
the c-w interference may possibly saturate the receiver in such a way
that the response of the receiver to incremental signals is essentially zero.
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Under this condition no signal will be seen in the receiver output regard-
less of the size of the input signal.

Pulsed Interference—Because it is now easy to produce a series of
intense r-f pulses, it is important to consider the interference effects they
may produce. Any modern radar set usually causes interference of this
type in near-by receiving equipment. One may assume that the inter-
ference consists of a series of very intense r-f pulses repeated at intervals
corresponding to the PRF of the interfering set. The length of these
pulses will be that commonly used in radar practice, perhaps a few
microseconds; therefore, the spectrum of the interference will be similar
to that described in Chap. 2 for pulse signals. Equation (2-24) showsthat
the main energy content will be contained within a frequency band
approximately equal to twice the reciprocal of the interfering pulse
length.

The deleterious effects of pulsed interference depend considerably
upon the type of desired signal with which the interference competes. If
the signal is a weak radar echo, the power spectrum of the pulsed inter-
ference will be similar to that of the desired signal; hence the interference
is relatively serious. The intensity of the interference is generally con-
siderably greater than the intensity of the radar signal. The chance
that the interfering signal occurs at the same instant of time, i.e., at the
same radar range, as the desired signal, however, is ordinarily very small.
Because of this, the pulsed interference is not usually troublesome; the
desired signal is simply seen during the time when the interfering pulses
are not present. It is interesting to note that receiver saturation in the
presence of pulsed interference reduces the deleterious effect of the
interference whereas it increases the deleterious effect of c-w interference
as previously discussed. Receiver saturation simply eliminates the
major portion of the incoming pulsed interference as seen in the output of
the receiver. Even though pulsed interference does not necessarily
prevent the observation of the desired signal, it is nevertheless extremely
fatiguing to an observer. Methods for its elimination have been
developed and are discussed in Chap. 12.

6-8. Complex Types of Interference.—There are many ways in which
interference may be made more complex. Almost all of these methods
depend upon making some parameter of the interference random in time.
Randomizing amounts to making the interference “noisy” in some
respect.

Amplified R-f Noise.—It is possible to obtain ‘“noisy” r-f energy by
simply amplifying thermal noise. It is true that the total amplification
must be enormous, but amplifiers for this purpose can easily be made.
The spectrum and time distributions of the emitted radiation may, cf
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course, be almost exactly like those of the thermal noise itself. Thermal
noise is discussed in Chaps. 4 and 5, where it is pointed out that its
spectrum is uniform throughout the frequency range and no correlation
exists between the voltages at one instant and the next. The amplitude
distribution of the r-f voltage is, of course, Gaussian.

The difficulties in the production of such amplified r-f noise appear if
it is desired to obtain a wide band of r-f energy. Although such devices
are relatively easy and straightforward to construct, wideband amplifiers
are clumsy, expensive, and consist of a great many components. Where
the noise bandwidth of the radio frequency must be large, one of the
following alternative methods is desirable.

Continuous-wave Inlerference Amplitude-modulated by Noise.—It is
possible to modulate a c-w carrier by audio or video noise. The r-f
output consists of a strong carrier and noise sidebands. The total band
of frequencies occupied by these noise sidebands is, in general, just twice
the bandwidth of the modulating noise. The effect of the carrier itself
cannot be neglected; its action is similar to ordinary e-w interference.

The carrier can be modulated by several types of noise. It is common
to use a noise voltage derived from thermal noise in the video system
itself. In this case the video noise has a Gaussian amplitude distribution.
One of the properties of this distribution is that it has no well-defined
upper or lower limit. It therefore follows that when this amplitude
function is used to modulate the carrier, the upper or positive noise peaks
will be ltmited at some point because of the finite power-handling capa-
bilities of the transmitter. Likewise the lower end will be limited at
some point because of the original finite strength of the carrier itself.
The original carrier amplitude is customarily located at one-half the
maximum value that can be supplied by the transmitter. In thisfashion,
the limiting, or “clipping,” as it is sometimes called, is symmetrical for
the positive and negative noise peaks. ]

The degree of clipping depends on the amplitude of the modulating
video noise compared with the carrier level. If the noise amplitude is
small, the clipping will be relatively unimportant and the r-f sidebands
due to the noise will be uniformly distributed on each side of the carrier
up to frequency limits determined by the video bandwidth of the noise
itself. As the modulating noise amplitude is increased, clipping becomes
more and more important, with the effect of slightly modifying the r-f
noise spectrum. This modification is discussed in Sec. 12-7.

The clipped noise in interference of this type differs from the unclipped
noise in its relationship to signal visibility. Clipping produces a ceiling
to the interference, above which the signal may be easily seen and there-
fore always increases signal visibility for the same total noise power. The
ceiling effect will be more pronounced if the modulation percentage is
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high. It will also be more pronounced if the bandwidth of the receiver
subject to the interference is large compared with the bandwidth of the
modulating noise. Both these effects are brought out more clearly in
Chap. 12.

Continuous-wave Interference Frequency-modulated by Noise—If the
video noise function is used to modulate the frequency of c¢-w radiation,
the essential advantage to be gained by modulation of this form is that a
relatively large r-f band can be covered by a given interfering station.
In interference of this form, therefore, the total frequency excursion is
customarily made several times as large as in the c-w a-m case. It is
usual, however, to make the frequencies contained in the original video-
modulating function similar to those of the case just discussed.

Effects of the f-m interference are somewhat different from those of
a-m interference. The noise amplitude in the receiver is determined by
the excursions of the interference signal across the r-f or i-f acceptance
band of the receiver. If one assumes that the total frequency excursion is
large compared with the bandwidth of the receiver but that the fre-
quencies contained in the noise producing the modulation are small com-
'pared with the bandwidth of the receiver, then the receiver output will
-contain a number of pulses whose shape in time is similar to the shape of
the i-f or r-f bandwidth in frequency and whose amplitudes are relatively
constant. These pulses will be repeated at random times. Because of
the relatively constant amplitude of these pulses, the effect of the inter-
ference is similar to that of highly limited, or clipped, a-m noise. A
“ceiling”’ effect occurs but for quite a different reason from that in the
a-m case.

The effectiveness of interference of this type clearly depends upon
obtaining a noise function such that an excursion across the receiver band
occurs within a time p approximately equal to the receiver response time,
that is, a time equal to the reciprocal of its bandwidth. If such an
excursion does not occur, the interference will lose its effectiveness
because of the constant-amplitude pulses produced and because of the
time spaces between them. Within these spaces the desired signal can be
found without any accompanying interference.

In actual practice it is not usually possible to obtain either pure
amplitude modulation or pure frequency modulation. The effectiveness
of both types of interference, however, is about the same provided the
bandwidths, excursion, and fractional modulation are properly appor-
tioned. Therefore, if both phenomena occur, they can be treated by
addition of the separate effects.

Random Pulses.—1t is possible to obtain “noisy’’ r-f interference by a
series of pulses that have constant amplitudes and pulse length but
random occurrence. The *randomizing” itself can be done in a number
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of ways. One possibility is to produce the pulses from the impulses
generated by the disintegrations of a radioactive source. If the average
spacing between these pulses is long, interference of this type will
clearly have exactly the effect of the simple pulsed interference discussed
in Sec. 6-7. If the average spacing between the pulses becomes of the
order of magnitude of the reciprocal of the receiver bandwidth, however,
the output of the receiver will contain a series of superimposed pulses in
which the degree of overlapping is random. The output of the receiver,
therefore, contains random amplitude fluctuations, or noise, and this
noise interferes with signal visibility in a way similar to that described
for thermal noise. Only the two extreme spacing conditions can usually
be treated adequately: (1) when the spacing between pulses is very large
and (2) when the average spacing between pulses becomes very short.
Chapter 12 treats these questions in detail.




CHAPTER 7
THE DETECTABILITY OF SIGNALS IN THE PRESENCE OF NOISE

THEORETICAL INTRODUCTION

7-1. Definition of the Signal Threshold.—The problem of determining
how far “noise” limits the detection of a ““signal” is a complex one and is
only partially amenable to a theoretical analysis. Since in the last
analysis a human observer must judge, either visually or aurally, whether
the signal is present or not, it is clear that some of the psychophysiological
properties of the eye or the ear will influence the signal threshold. For
instance, in the visual observation of a radar signal on an A-scope or PPI,
enough light must be produced on the screen to make the display visible.
In other words there is a brightness limit for the detection of a signal.
Furthermore, the contrast between the image of the signal and that of the
noise background must be great enough for the signal to be seen; hence
there is also a contrast limitation for the detection of a signal. Such
limitations are sometimes of practical importance, and some experimental
studies (especially of contrast limitation) have been made.! It is obvious,
however, that little can be said theoretically about these limitations.
Only when the function of the observer is reduced to measuring or counting
will the question of the minimum detectable signal become a definite
statistical problem for which a theoretical analysis can be attempted.?
The success of such an analysis has shown that for a rather wide range of
experimental conditions, the essential limitation for the detectability of a
signal is due to the statistical nature of the problem.® In this chapter
the discussion will be restricted therefore to what may be called the
statistical limit for the detection of a signal.

1 J. Fairbairn and R. G. Hopkinson, “Visibility of PPI Traces on Cathode Ray
Tubes. Traces on Uniform Backgrounds,” Report No. 8506 of the Rescarch Labora-
tories of the General Electric Company, Ltd., Wembley, Middlesex, England, July 7,
1944. For further remarks on contrast, see Sec. 8-8.

* Among the theoretical reports, see especially 8. A. Goudsmit, “The Comparison
between Signal and Noise,” RL Report No. 43-21, January 1943; D. O. North,
‘“ Analysis of the Factors Which Determine Signal/Noise Discrimination in Radar,”
RCA Technical Report PTR 6-C, June 1943; J. H. van Vleck and D. Middleton,
“Theory of the Visual vs. Aural or Meter Reception of Radar Signals in the Presence
of Noise,” RRL Report No. 411-86, May 1944.

3 It should be emphasized that not all the expecrimental observations can be
explained by the statistical theory. To explain the deviations, assumptions must bo

made about the human observer. For examples, see Secs. 8-7 and 8-9.
149
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The first question that arises is how to define the minimum detectable
signal, or the signal threshold; here it is important to emphasize that one
can speak of a mintmum detectable signal only (1) when the number of
observations is limited or (2) when the time of observation is limited.

The simple case of the detection of a small cur-

rent by means of a sensitive galvanometer may

help explain this. Because of thermal agita-

! tion the mirror of the galvanometer will have

to an unavoidable Brownian motion around its

Time ———» equilibrium position. It might seem, there-

Fie. 7-1—Brownian motion  fore that when a current or signal (introduced
of a galvanometer mirror. ) X

at t = to; see Fig. 7-1) produces a deflection

small compared with the mean ‘‘jitter” of the mirror, such a current

could not be detected. This is true, however, only when the number of

observations is limited. When there is unlimited time, the average posi-

tion and therefore also a change of the average position of the mirror can

be determined as accurately as desired.

Strictly speaking, therefore, the noise or the thermal motion does not
limit the detectability of a signal.! It is only when there is a limited
observation time that for small signals one can make a guess or a bet as to
whether the signal is present or not, and there is then a definite probability
that the guess is right. Of course, for increasing signal strength this
probability will rapidly increase and approach unity. A plot of the
probability of success vs. signal strength will be referred to as the betting
curve. The minimum detectable signal can then be defined as that signal
strength for which the probability of guessing right is, let us say, 90 per
cent; this means that, on the average, the guess will have proved right in
nine out of ten cases. The minimum detectable signal defined in this
manner will decrease when the observation time increases and, in principle,
will approach zero when this time goes to infinity. It is not necessary,
of course, that the time of observation be actually the time during which
the human observer looks at or listens to the signal and remembers the
results of his observations. It is often possible to let the detecting system
perform automatically a great number of observations and present a
suitable average to the human observer. North? calls this “integration
of the signal before detection,’”” in contrast to the effect of the human
observation time, which he calls “integration after detection.”’® It is

Deflection —»-

1 Excluded here are all systematic variations (for instance, of the zero position of
the galvanometer), which in practice will always put a limit on the detectability of a
signal.

2 Loe. cit.

3 Similarly a distinction will be made between the integration time of the detecting
system and the observation time, which is the human integration time.




Sec. 7-2] PROBABILITY DISTRIBUTIONS AND SPECTRA 151

advisable to make this distinction because only the human observation,
and not the recording apparatus, is influenced by physiological and
psychological factors that often defy a strict theoretical analysis. In
principle, however, the human element can always be reduced to a
measuring or a counting, and then the distinction between the integration
and the observation time will disappear.

The idea that the determination of the minimum detectable signal is
essentially a game of chance (when only a finite time is available) is
clearly recognized in the experiments carried out at the Radiation
Laboratory by J. L. Lawson and coworkers. In these experiments, which
will be discussed in detail in Chap. 8, a

radar signal could be produced and shown s _ .
on a A-scope at six different positions. g g !
The noise was usually visible all the time. gg 5
Every 3 sec, let us say, the position of the * ql

“min

signal was changed in a random fashion, '

Signal strength
and the observer had to guess where the 4, . 7.2.—Schematic betting curve.
signal was. The number of successes
(above the rumber of pure chance successes) was recorded, and in this
way. by varying the signal strength, there was obtained a betting curve
(see Fig. 7-2) from which the signal threshold P could be defined.!

A careful study has been made of the dependence of Py on all kinds of
parameters (for an enumeration, see Sec. 8-4), and in Chap. 8 the experi-
mental results will be discussed in detail. For the development of the
theory it is first necessary to obtain some information about the prob-
ability distributions and about the spectrum of the output of a super-
heterodyne receiver when both signal and noisc are present.

7-2. Probability Distributions and Spectra.—In Sec. 3-8 there was
discussed the problem of finding the probability distributicns and the
spectra of Gaussian noise after it has gone through a linear or square-law
detector. In this section the results of Sec. 3-8 will be extended to the
case where a signal is also present.? The whole analysis will start from
the i-f stage of the receiver. The convenient fiction will be used that

1 1t would be best to agree on a definite pereentage (say 90 per cent) and define 72,
as the signal strength for which this percentage is reached. However, it is often more
convenient to define Pg graphically, as indicated in Fig. 7-2 (see also Sec. 8-3).

20nly an outline of the calculations will be presented. The problem has been
discussed often, and several methods have been used. Here the method of North
will be used, which was explained in Sec. 3-8. For the so-called “direct method”
and further references, see S. O. Rice, Bell System Techn. J., 25, 45 (1045), Part IV,
and also W. R. Bennett, J. Acoust. Soc. Am., 16, 164 (1944). Cf. also the report of
J. H. van Vleck and D. Middleton, “Theory of the Visual vs. Aural or Mcter Recep-
tion of Radar Signals in the Presence of Noise,”” RRL Report No. 411-86, May 1944,
J. Applied Phys., 11, 940 (194€).
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the input of the i-f amplifier is connected to a signal generator and to a
source of Gaussian noise that has a constant spectrum and given power
per unit frequency interval. The problem is to find the probability
distributions and the spectrum after the signal-plus-noise has gone through
the i-f amplifier and a linear or square-law detector.

Fourier Analysis of Signal and Noise.—The initial signal amplitude!
will be represented by the formula

Sia(t) = oo(?) cos 2nft + Bo(t) sin 2xf.L, (1)

where f, is the i-f carrier. The quantities a, and 3, are either constant
(for a c-w signal) or periodic functions of ¢ (for a pulsed signal). In the
- latter case the periodicity interval is the pulse
repetition period 0,, and aq(t), B.(t) describe
the shape of the pulse. Usually the pulse will
be assumed to be rectangular in shape and of
duration r. When the pulse is not rectangu-
lar, the pulse length 7 will always he defined as
the distance between half-power points.
Since the pulses ordinarily do not overlap, it
is usually not necessary to take the periodicity
of the signal into account (but see Chap. 9), and aot), Bo(t) can represent
one pulse, where ¢ is measured from the middle of the pulse.

After the signal has gone through the i-f amplifier, it can easily be
shown that the amplitude becomes

Firg. 7-3.—General shape of
the i-f pass band,

S@) = a(t) cos 2xf.t + B(t) sin 2., 2)
where
+
a— 1B = /_,, df G.(N)Z (e, 3
+ =
G.(f) = f_m dt (ag — Bo)e2r/e, (1)

and Z(f) is the system function of the i-f amplifier. The frequency f is
always measured from the carrier frequency f,. The function Z(f) will,
of course, in general be complex; let us write

Z(f) = A(flee. )

The quantity A(f) represents the amplitude function, and ¢(f) the phase
function; A%(f) will usually? be an even function of f and will have a
maximum at f = 0. Then the i-f bandwidth B (see Fig. 7-3) will always

!In the following the terms “signal amplitude” and “noise amplitude” will be
used.  To fix the physical interpretation of these quantities it will always be under-
stood that these quantitics have the physical dimenstons of the square root of power.

*This is not always the case, but in what follows it will nevertheless always be
assumed, since the formulas then become simpler,  Only in Chap. 13 will a case be
met where A%(f) is not an even function of f.
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mean the distance between half-power points, that is, points where
A?(f) is half of the value at f = 0.

Let us now consider the noise amplitude. We may assume it to be
periodic with a period 6 that is very long compared with all periods
occurring in the system and that afterward we shall let approach infinity.
Initially the noise amplitude can be developed in a Fourier series

®

Nuo(t) = z (awr cos 2ufit + by sin 2xfied), (6)
=0
where fvv = k'/6. The quantities ay and by are random variables, and
it will be assumed, as in Sec. 3-7, that

1. ay = bk' = O,

2 B — 7
k'bl’ = % 51:’1'; arby = 0. ( )
2. The aw and by are Gaussianly distributed. The quantity o2 in

Eq. (7) is a constant with the physical dimension of energy; in fact,
o2 = kTF, (8)
where k is the Boltzmann constant, 7 the absolute (room) tem-

perature, and F the over-all noise figure of the receiver (see
Chap. 5).

After the noise amplitude [Eq. (6)] has gone through the i-f amplifier,
the amplitude becomes

o

apdy =

N(t) = E Ak'[ll;;' CcoSs (21rfA-/t — ¢kl) + bk' sin (21rfk't — qﬁy)].
%

Since Aw will be a maximum for fir = f,, it is convenient again to meas-
ure the frequencies from the carrier frequency f. as zero point by putting

fk = f’;’ = Je-
The sum of signal and noise amplitude can then be written in the form
[¢f. Eq. (2)]

S@) + N(@) = X() cos 2nf.t + Y(2) sin 2nf.t, (9)
where
+ o
X(@) = a(t) + E Axlar cos Crfit — o) + by sin (2rfit — ¢1)],
o (10)
Y{t) =8@) + E Al —ar sin 2rfit — ¢i) + by cos (2mfit — o).
E=—

_This amplitude is then applied to the second detector.
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First Probability Distribution after the Second Detector—With the
input as given by Eq. (9), the detector output will be

r() = VXNt + Y3

when the detector is linear and r2(¢) when the detector is quadratic. The
first question that arises is the probability distribution of » at a definite
time instant ¢{. This can be found by first determining the joint dis-
tribution for X and Y together. Since X and Y are linear functions of
the random variables a; and b, [see Eq. (10)], which are Gaussianly dis-
tributed, it follows that X and Y are also Gaussianly distributed. Now
it is easily found from Eqs. (7) and (10) that

X =ab, T=50,
+ o
a? + =
T == -5 ) Aime [ aag-w ay

k=—»

(X - a)(Y —8) =0.
Therefore the distribution function for X and ¥ must be
' dX dY \ \
Pl(Xy Y) dX dY = w e {(X—al+ (Y=g 2w (12)

By introducing polar coordinates r and # instead of X and Y, and by
integrating over 6, there is finally found for the distribution of »

2+a2tg
Py(r) dr = ’—If,’ e W], (% Vit m), (13a)
10 where Io(z) is the Bessel function of
2={0 zero order and purely imaginary argu-
08 / E=1 ment.
06 2/=3 A rough graph of Py(r) for differ-
o \\ / \ ent values of z, where
= 04
\ \/ z = (a® + B%)/2W,
02 q is shown in Fig. 74. For large val-
0 = ues of 2z, the form of Pi(r) becomes
0 1 2 ,,3, 4 5 6 nearly Gaussian and may then be ap-
N34 proximated by
h_utilz)x:s' ?0? dli‘f;‘;iten%rosgﬁjrgy o?‘s:‘};‘e Pl(T) z 1 e_(_"_‘éiﬁ L)" (13b)
signal-to-noise ratio. \/ZWW

From Eq. (13b) the average values can be calculated!

1 Cf. Sec. 7-6, where will also be found some of the properties of the confluent
hypergeometric function F(a,b;z) that occurs in Eq. (14a).
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- _ _ W 1 a4
7‘—-—/; rPl(r)dr—\/zl‘( éyl, 14 >; (14a)

= / rP(r) dr = o> + §° + 2W. (14b)
0

Equation (14b) also follows immediately
from Eq. (11); it shows that with regard riZ /\
to mean-square values, the signal and the -
noise are simply additive (see Fig. 7°-5); 2W ;
is the constant noise power, and a? 4 §2 '
has the shape of the pulse after it has gone gy 7.5 _Mean-square deflec
through the i-f amplifier. tion as a function of the time.
Second Probability Distribution.—To find the spectrum of () and
7%(t), there must first be calculated the average values r;r; and 737, where
the subscripts 1 and 2 refer to two time instants ¢, and ¢.. For this, we
need the joint probability of finding X and Y between X, and X; + dX,
and Y; and Y + dY, at time ¢; and between X, and X, + dX, and ¥,
and Y; + dY, at time t.. Since X, ¥,, X;, Y, are all linear functions
of the random variables a;, b; [see Eq. (10)], the probability distribution
Py(X,, Yi; Xo Y, will be a four-dimensional Gaussian distribution,
which can be written in the form

Pg(Xl, Y1;X2, Yz) Xm dY] dXz de

dX,:dY,dX,dY 1
= EIQW(II——_LPT?GXP(— T =) (X — a2+ (Y1~ B1)?

+ (Xe — a2)? + (Y2 — 827 —2o[(X1 — a1)(X2 — a»)
4+ (Y1 — 8)(Y. ~ ﬁz)]})- (15)

In Eq. (15) the subscripts on @ and 8 again refer to the two times ¢; and
t2; p 18 a function of 7 = ¢z — ¢, defined by

f_’“: A%(f) cos 2nfr df
[[Tama

and it may be called the normalized correlation function of the noise alone.

For the quadratic detector we must caleulate r27%; using Eq. (15) we
easily find

p(r) = (16)

+
riry = f///XmleddeYz(Xf-FY%)(X§+Y§)P2(X1, Yi; X5, Ys)

= (o} + 81 + 2W)(af + B3 + 2W) + 4Wp(auas + B182) + 4W 22 (17)
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For the linear detector we have to find the average value ;75  This
cannot be calculated exactly; however, for most purposes it is sufficient
to find an approximate value by developing Eq. (15) in powers of p
[from Eq. (16) we see that p < 1] up to p2! The successive terms can
then be integrated and we find

Ty = / / / / dX1dY1dX2dY: /(X V1) (X2 + Y2)Po(Xy, YV1; X3, V)

=~ L)1) + W {I(X) — aJI(l)][Iz(X) — aal5(1)]

+ (Y} = 8:.Li(DI(Y) = BaI2(1)]} + 2W2 L (X?) — 2aJ4(X)

+ (e} = W) LL(DT2(X?) — 200l 2(X) + (o = W) L(D)]+[1:1(Y?) —28.1.(Y)
+ (81 — WL (DIIAY?) — 28,1:(Y) + (88 — W)I,(1)] + 2[I,(XY)
+ aiili(l) — el i(X) — B Li(D)][T2(XY) + asBals(1) — o s(X)
. . = B1:(Y)]}, (18)
where I(¢) is defined by the integral

e

r2

L] 2x
I(¢) = 2TW / rie 2V dr /; er/Wlacs 04850 0) g ¢ (r,0).  (19)

In particular, we find (X = rcos 6, Y = rsin 4)

1) = @F(— % 1; —z)

i) = o (- e Z)’
R B
I(XY) = ,\/maﬁF(— 2 3; —z),

with z = (a? 4 $%)/2W. The subscripts 1 and 2 on the I's in Eq. (18)
indicate that the a and 8 involved should have the corresponding sub-
scripts (for some of the integrals involved, see Sec. 7-6). The result is

(20)

! When there is no signal, 7175 can be computed exactly in terms of the complete
elliptic integrals E(p) and K(p), as was mentioned in Sec. 3-8:

rre = WI2E() — (1 — p)K(p)]
_ W p? ot
_T(1+Z+@+---).

This shows that at least in this case the series development in powers of p converges
rapidly.
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still so complicated that for the further discussion, it is convenient to
consider separately the cases where z << 1 and 2> 1. Using the develop-
ments for the confluent hypergeometric functions F' (see Se¢. 7-6) we then
find for small signal-to-noise ratios

Fir ~ gy (od + 81+ 4W)(ef + B2 + 4W) + 4Wa(aras + £:8y)

+ 427, (20a)

which has practically the same form as Iiq. (17), the latter being the exact
expression for the quadratic detector; and for large signal-to-noise ratios

rirs = [(a} + B)(af + B + W ﬁ%ﬁ%ﬁ

Wip? {102 - B182)° .
2 [(af + B8D(aj + B

(200)

Determination of the Spectrum—IExample.—The average values 737}
and 717, as given by Eqgs. (17) and (18) are still functions of the two time
instants ¢; and {2; or with r = ¢, — ¢, they may be considered functions of
{; and r. To obtain the spectrum we must still average over t;.! From
the resulting functions Ro(r) and E.(7) we then find the spectrum G(f) by
the relation

G(f) =4 / R(7) cos 2nfr dr. (21
¢
An example will demonstrate this procedure. Instead of a pulsed signal,
let us take an a-m c-w signal
S({) = (S + 8¢ cos 2nfot) cos 2nf.t. (22)

The pass band of the i-f amplifier will be taken to be rectangular of
width B; hence

1 for |f| < $B,
Z(f) (23)
0 for [f| > $B.

We then obtain [see Egs. (3) and (11)]
a(t) = 8 + Sq cos 2xfd, gl =0, W = ¢?B. (2¢9)

Substituting these values in Eq. (17) and averaging over {;, we obtain

1(f. Sec. 3-3. 'The signal and noise together form a nonstationary random process;
and in order to obtain the correlation function, we have to perform both an ensemble
and a time average. At this point we should remember that the signal functions
alt) and B(¢) are periodic functions of ¢.
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2 S‘
Ro(m) = (,5'2 + 2 + 2«12B) + 28282 cos 2rfor + §° cos 4mfor
2
+ 4¢2Bp(7) <;S2 % cos 2ﬂ'fuT) + 404B%*(1). (25)
In Eq. (25) p(r) is, of course, completely determined by Eq. (23);in fact

we find from Eqgs. (17) and (23) that

p(r) = Bl sin %‘r

However, in determining the spectrum from Ro(r) by means of the basic
Eq. (21), it is not necessary to first calculate p(r). We can make use of
the following general equations [¢f. Egs. (3-25) and (3-75)]:

2 /;Q dr cos 2rfr = 8(f),
4 -/(‘)" dr cos 2xfr cos 2xfir = 6(f — f1),

) (26)
¢ [ drote) cos 20t = 2009,
¢ [ arwe) cosaege =2 [ atroau + o an,
where Q(f) is the normalized i-f spectrum; hence
o) = 2 27)

| awa

Using these results there is finally obtained for the spectrum, in the
case of the quadratic detector,

Ge(f) = 2 <S2 + 5 + 2U23> 8(f) + 282836 (f — fo) + 5 ° 8(f — 2fy)

Sz
(52 + 7"), for0 < f < — fo,
So B B

St 4 =2 for— fo<f<
2
T 8 for7<f<—+f
4 2 2 T
0, forf>1—;+fo,
(B -1, for0 < f < B, o8
+8&% 1o, for f > B. (28)
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This result is shown in Fig. 7-6 and can be understood in simple terms.
The spectrum consists of four parts:

UD-c component

[Lﬂ /—Signal peaks

F 0 Continuous spectrum
f of noise alone

Continuous
spectrum due to
cross modulation
of signal and noise

Gy (/)

F16. 7-6.—3pectrum of a modulated c-w signal plus noise after a square-law second detector.

1. Direct-current term, shown by the peak at f = 0. Both the signal
and the noise contribute to this term. The signal part is simply
the square of the mean signal power; the noise part is 40*B? or
4W?, which, according to Eq. (14b), is just (7%)? for noise alone;
finally there is a cross term, which represents the average value of
the beats between the signal and the noise.

2. Signal peaks. They are self-evident; that with the single modu-
lating frequency fo we get two peaks (at fo and 2fo) is, of course,a
consequence of the fact that we have a quadratic detector.

3. Continuous spectrum due o cross modulation of signal and nosse.
The beats between the three discrete frequencies f., f. + fo, which
are contained in the signal before the second detector, with all the
noise frequencies in the band B will lead clearly to a continuous
spectrum, which consists of three blocks between the frequencies
0, B/2), [0, (B/2) — fdl, [0, (B/2) + fo|. It is also easily seen
that the height of the first block will be proportional to S%?2,
whereas for the other two it will be proportional to +Sis2. Adding
the three blocks leads, then, to the complete continuous spectrum
as shown in Fig. 7-6.

4. Continuous spectrum of noise alone. This spectrum is caused by
the beats between any two noise frequencies. Since the number of
pairs of noise components with a certain frequency difference will
decrease as the difference increases, it is clear that the spectrum will
decrease with increasing f, and for a rectangular i-f pass band
it is easy to see that the triangle will be as shown in Fig. 76 (cf.
also Sec. 3-8).
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For the linear detector there are some important differences in the
spectrum. To understand these it is best to consider separately the
cases of a small and a large signal.

Using the formula of Eq. (20a), substituting Eq. (24) and averaging
over t;, we obtain for small signal-to-noise ratios

T

9 2
Sih [(sz + % + 46212) + 28282 cos 2nfor

Ru(r) =

4
-+ % cos 4xfor + 40’4sz2]. (29a)
The term that is proportional to p may be neglected, since the continuous
spectrum due to the cross modulation of signal and noise will now be
negligible compared with the pure noise spectrum. Equation (29a) leads
to the spectrum

™ S3 :
Gu(f) = 3228 [(Sz + 9 + 4023) 8(f) + 2828%s(f — fo)
+ %3 6(f — 2fo) + 8¢*(B — f)], 0 <f<B. (29b)

This result is similar to the case of the quadratic detector; it should be
noted especially that although the detector is linear, we still get the
double frequency 2f, in the discrete spectrum. The continuous spectrum
is still triangular in this approximation, but the height of the triangle
(which for the quadratic detector was 87¢B) is now (r/4)c? and, therefore
independent of the bandwidth.

Starting from Eq. (237 and now neglecting the term proportional to
0%, we obtain for large signal-to-noise ratios

2
R.(r) = 82 + §29 cos 2rfor + oBp, (30a)

202, for 0 <f < E;,

Gulf) ~ S%(1) + 5 o7 — 1) + (30b)

0, for f > l—;

Now one gets only a signal peak at f, and the continuous spectrum con-
sists of one block between f = 0 and f = B/2.

General Discussion of the Spectrum.—In the general case the results
will be similar. One always starts from Iiq. (17) or (18). The signal
function «® 4 3% must be developed in a Fourier series, and we must
average over the time ¢,. The parts in FEqgs. (17) and (18) that are inde-
pendent of p will give terms of the form Ci cos 2xfir, and these will lead
to the d-c part and the signal peaks in the spectrum, Of course, for a
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pulsed signal with repetition period ©, the peaks will be spaced 1/0
apart. The parts in Eqgs. (17) and (18) that are proportional to p lead to
the continuous cross-modulation spectra, whereas those which are
proportional to p* lead to the pure noise spectra. The shapes of these
spectra will, in general, not be so simple as in Fig. 7-6; the noise spectrum,
for instance, will be triangular only for a rectangular i-f pass band. It
remains true, however, that for a quadratic detector the initial value of
the noise spectrum is proportional to B and the area is proportional to B?,
whereas for a linear detector the initial value is independent of B and the
area is proportional to B.

7-3. Detectability Criteria. The Deflection Criterion.—Let us return
now to the problem of determining the signal threshold. Most of the
theoretical analysis available at present is based on a more or less plausi-
ble, but in principle arbitrary, choice of a detectability criterion. For
instance, let us consider again the simple example of measuring a small
current with a galvanometer (see Fig. 7-1) and suppose that only one
measurement can be made of the deflection ». The average value of the
deflection will be a little different when the current (or signal) is present,
and it is plausible to assume that in one measurement the current is just
detectable if the shift of the average value is of the same order of magni-
tude as the standard deviation of r (whether with or without current
makes little difference, since the currents to be detected are small). Or
in a formula

Tsyny — Tx

7 - el
where the subscripts S and N refer to signal and noise and where & is a
constant that is of the order of magnitude of 1 if only one observation is
made. The criterion [Eq. (31a)] will be called the ‘‘ deflection criterion.”
It can also be used for the visual detection of one radar signal pulse on an
A-scope in the presence of noise; in this way the dependence of the signal
threshold on parameters like pulse length, i-f and video bandwidths can
be satisfactorily explained. A detailed discussion will be found in Chap.
8 (especially Secs. 86 and 87); here only the following more general
observations are made.

1. The detectability criterion [Eq. (31a)] might be generalized to

Joaw —Jr__ k, (31b)
e — ()"
where f(r) is some function of the deflection still at our disposal.
By choosing the proper function f(») we can try to make the signal
threshold as small as possible. Or by choosing a function f(r)
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that emphasizes the large deflections, we can try to express the
tendency of some observers to look mainly at the tops of the noise
fluctuations. The simplest and most natural choice, however, is
to take for f(r) the actual deflection on the A-scope; hence, with
the notation of Sec. 7-2, f(r) = r if a linear detector is used, and
f(r) = r* if a square-law detector is used. The signal threshold
will then depend on the kind of second detector used. It turns
out, however, that for small signal-to-noise ratios, the difference
in threshold between a linear and quadratic detector is so small
that it is unobservable.! Therefore, the usual practice will be to
take f(r) = r?, since all formulas are then simpler. It is unprofit-
able to speculate on what feature of the fluctuating A-scope picture
the observer bases his judgment. Only for a so-called ‘‘ideal”
observer (see Sec. 7-5) does the question of the choice of the
function f(r) have a precise sense.

2. The deflection criterion [Eq. (31a) or (31b)] applied to the detection
of a radar signal pulse considers only the deflection produced by the
pulse at one instant of time. This time point is chosen, of course,
to be the time corresponding to the maximum of the pulse after it
has passed through the i-f and video amplifiers. The shape of the
pulse is not taken into account except in so far as it affects the
maximum value. In the evaluation of the average values occurring
in the detectability criterion [Eq. (3la) or (31b)] only the first
probability distribution of the random process describing the signal
and noise is required. The theory based on this criterion may
therefore be called a one-point theory. It is not difficult to devise
criteria in which the deflection at two time points would enter and
that would lead to a two-point theory; the latter would use the
second probability distribution and would be more sensitive to the
shape of the pulse. And in this way we can go on. It seems,
however, that most of the experimental observations ecan be under-
stood on the basis of the simple one-point theory, and therefore
the more refined two- or n-point theories will not be considered.

3. The influence of the time of observation or of the total number of
observations, the importance of which was stressed in Sec. 7-1, can
be taken into account by the following simple and natural general-
ization of the deflection criterion [Eq. (31a) or (31b)]. Let us
suppose that instead of one observation, N independent observa-

1 The reason is that for small signal-to-noise ratios the linear and square-law
detectors act in about the same way, as we see from the correlation functions and
spectra [¢f. Eqs. (28) and (29b)]. For the proof, see Van Vleck and Middleton,
“Theory of the Visual vs. Aural or Meter Reception of Radar Signals in the Presence
of Noise,” RRL Report No. 411-86, May 1944, and Sec. 8-6.
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tions! are made with the signal and N observations without the
signal.

It seems natural, then, to use in the detectability criterion, not the
deflection 7 or f(r), but the average value

N
1
v = ) I (32)
i=1
where 71, 72, . . . , ry are the N observations of the deflection. We shall

therefore assume that the signal is just detectable if the shift of the
average value of y due to the signal is of the same order of magnitude as
the standard deviation of ¥ when only noise is present. Or in a formula?
Ysynv — Yw _

[yz — (@Fw)"

Now it follows easily from Eq. (32) that, if the r’s are independent,

(33)

— 1 -
i=J =N+ NN-DHHI
Hence,
Goonw — Gn = Jsn — Jn,
— _ 1 34
- @0t = g7 - 34)
The shift of the average value is, therefore, the same as before, whereas
the fluctuation decreases and goes to zero for N — «. The signal will
therefore be the more easily detectable the larger N is. Substituting Eq.
(34) into Eq. (33) we obtain

f S4+N T fN — k

72— (w1 VN

This equation is the generalization of the deflection criterion [{Eq. (315)]

for the case of N observations. (For further discussion and for the com-
parison with experiment, see Secs. 8-8 and 8-9.)

The Power Criterion.—In connection with other methods of observing

a radar signal it is sometimes simpler to use a different type of detect-

ability criterion. Let us consider, for instance, the so-called ‘‘aural

(35)

1In the example of the measurement of a small current with a galvanometer,
“independent’ means that the time intervals between the observations must be
large compared with the correlation time. For radar signal pulses this independence
is always assured, since the repetition period is always large compared with the
correlation time of the noise.

3 The subscript N (for “‘noise”) should not be confused with N the number of
observations.
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method”’ of detection. In See. 7'2 it was mentioned that the spectrum
of the output of the video amplifier consists of a continuous part and a
series of discrete ‘‘signal’”’ peaks. These discrete frequencies represent
the power spectrum of the periodic series of signal pulses and are therefore
spaced 1/0, apart if 6, is the pulse repetition period. By using a filter
with a bandwidth that is small compared with 1/0,, one of the discrete
frequencies (for instance, the fundamental frequency 1/6,) can be iso-
lated, and we can try to listen to the output of the filter with an earphone.
This is the aural method of detection. It is clear that the power in the
signal peak has to compete with the power in the section of the continuous
noise spectrum that is cut out by the filter. Therefore it is natural to
assume that the signal peak is detectable if its power Ps is of the same
order of magnitude as the power Py in the segment of the continuous noise

band. Or in a formula P
S _ 1
P, = E, (36)
where %’ is of the order of unity. This criterion will be called the power
criterion.

On the basis of the power criterion [Eq. (36)], Van Vleck and Middle-
ton! have analyzed the aural and also the meter method of detection. A
short account of their work will be given in Chap. 9. The main point to
be emphasized here is that the analysis of these methods of detection
gives essentially the same result for the signal threshold. By the word
“essentially”’ is meant that in the different methods, the dependence of
the signal threshold on the parameters of the signal, such as pulse length,
PRF, and total number of pulses, will be the same. They can still differ
numerically, which may sometimes be significant, but the difference
cannot be made so large as one pleases by changing some paramcter of the
signal. This fact will be discussed in detail in Chap. 9; the main dis-
tinction between the different methods is fundamentally a difference of
the ratio of ¢nlegration time to observaiion time. Or in other words, we
let the detecting system do more or less integration before the human
observation begins.

Of course, the different methods of detection are equivalent only if
each method is pushed to the limit of its capacity. In practice this will
almost never be done, and therefore the different methods will usually
give different signal thresholds. Furthermore, in actual practice it will
make a lot of difference at which point the human observation begins and
whether it is visual or aural.

! Loc. cit. In the meter method of detection the output of the filter that selects the
signal peak is rectified and recorded by some kind of meter. The change of the

average value of the meter deflection when the signal is present provides the method
for detecting the signal.
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The power criterion [Eq. (36)] is also used in the analysis of the noise
limitation in communication systems. The following distinction can be
made between a detection and a communication system. In a detection
system only the presence or absence of a signal has to be determined;
therefore a c-w signal or a series of constant pulses can be used. In
a communication system more than just a yes-or-no answer is required,
and some sort of modulation must therefore be applied to the e-w signal
or to the series of pulses. The frequencies and amplitudes of this
modulation of the signal are the quantities to be detected. These will
appear as a discrete line spectrum superposed on the spectrum of the
noise and the unmodulated signal. For a sinusoidal modulation there
will be only one such peak, and the detectability of this peak will depend
on the ratio of its power to the continuous noise power with which it has
to compete. The power criterion [Eq. (36)] is again applicable, and the
theory is therefore similar to the theory for the aural method of detecting
a radar signal. There is one important difference, however. The main
result of the theory now will not be the determination of the minimum
detectable signal power, but the dependence of the minimum detectable
modulation e.n on the ratio z of the unmodulated signal power to the
noise power. It is clear that e Will be a monotonic decreasing function
of z, and it can be shown that for large 2, enn = 1/2, whereas for small z,
emn = 1/22.  Explicit expressions for e as a function of z will be derived
in Chap. 10 for some pulse modulation schemes and in Chap. 13 for the
well-known a-m and f-m communication systems.

7-4. What Is the Best Method for Detecting a Radar Signal.—In the
previous section we mentioned that the visual and the aural methods of
detection are essentially equivalent if each method is pushed to the limit
of its capacity. The question arises whether or not with these methods
of detection an absolute limit has been reached. In this section we shall
show that this is not the case, so that there is still room for an essential
improvement of the present detection methods.

Suppose that one has a train of signal pulses which persists over a
time 8. Let the repetition period again be O, so that there are alto-
gether N = 0/6, pulses. Now it can be shown that under the best
possible circumstances an average signal power P can be detected, given
by the formula

= k
Prn = N6, ol 37

Here k is a numerical factor of order of magnitude 1, and o2 is the average
noise energy before the i-f amplifier. This noise energy is due to many
causes but can always be considered as thermal noise with an effective
temperature T*, so that o2 = kT*, where k is the Boltzmann constant.
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For the derivation of Eq. (37) we refer to Sec. 86 (visual observation
method) and Sec. 9-6 (aural and meter detection methods). Here we
only want to point out that Eq. (37) follows from the fact that the detect-
ability of the signal depends for small signal strengths on the square of the
signal amplitude. With the deflection criterion [Eq. (31b)], for instance,
the detectability of the signal depends on the shift of the average value
of some function f(r) of the deflection r, which is caused by the signal.
From the probability distribution of the deflection [Eq. (13)] it follows
immediately that for small signals the shift of f(r) will be proportional to
S? if 8 is the signal amplitude. As a consequence one obtains from the
deflection criterion for the signal threshold an equation of the form

8? _ const.
W VN
where the constant is of the order of unity and depends slightly on the
type of second detector and on the shapes of the pulse and i-f pass band;
W is the noise power after the i-f amplifier. Since Pum « S27/6,,
W « Be? N = 6/6, and since for best performance Br must be of order
unity,! Eq. (37) follows immediately from Eq. (38).
From Eq. (37) follows that the minimum detectable energy of the
whole train of signal pulses is given by

Eow = 0Poi = ko? \/ezo,, = ko® \/N. (39)

Clearly Fun is usually much larger than o2 = kT*, since N is usually a
large number. It seems unlikely that this is the best one can do. The
detection system may be considered as an energy-measuring device,
which has itself an uncertainty in energy of the order kT*, The detection
of the whole train of signal pulses can now be considered as one observa-
tion of the energy E, and one must expect that the detection can be done
with almost certainty as soon as E is a few times k7*.  This gives a limit
for E that is much lower than Eq. (3) and in the authors’ opinion the
absolute limit which one may ever hope to reach.

The reason why with the present detection systems this absolute
limit has not been reached can be traced to the fact that the present
methods do not measure the total energy of the noise and of the series of
pulses. To the authors’ knowledge only one system of detection has so
far been proposed that really measures the received energy. Emslie?
has shown how this can be done in principle by letting the signal beat
with a continuous wave, which is introduced into the receiver at the same

(38)

L Cf. Sec. 8-6.
2 A. G. Emslie, “Coherent Integration,” RL Report No. 103-5, May 16, 1944.
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time as the signal pulses and which has always the same phase relation
with the successive signal pulses.! If the amplitude of the coherent
continuous wave is large compared with the rms noise amplitude, then the
probability distribution of the deflection r will be Gaussian [Eq. (13b)]
with a variance 2W and with an average value

7= (82 + C? + 28C cos ¢)%, (40)

where C' is the amplitude of the coherent continuous wave and ¢ the
constant phase angle between the continuous wave and the signal. Of
course, C > 8, and therefore it is clear that the shift of the average value
which is caused by the signal is porportional to the signal amplitude. In
fact, from Eq. (40) follows

Tsen — T = S cos ¢. (41)

In contrast to Eq. (38) we now obtain from the deflection criterion for the
signal threshold the equation

Scos ¢ _ const.

V2w /N

Clearly, if the phase angle ¢ can be kept constant and equal to zero, Eq.
(6) leads to a minimum detectable energy of the pulse train that is of the
order kT*.

T-6. Theory of the Ideal Observer.—The theoretical analysis based on
the detectability criteria discussed in Sec. 7-3 leads to a formula for the
signal threshold that contains a numerical factor k of order of magnitude
unity which has to be found from experiment. The reason for this
indeterminacy is, of course, that the minimum detectable signal is not
defined strictly on the basis of a “betting curve.” It seems desirable
therefore to try to formulate a more fundamental theory, which will
remove the ambiguity of the choice of detectability criterion and which
will explain the betting curve and in this way determine the value of the
numerical constant k.

Referring again to our galvanometer example (Sec. 7-1), suppose that
we know the probability distribution of the deflection r both when the
current is present and when there is noise alone. Suppose, furthermore,
that we do not know whether there is a current present or not and that
we have to decide this question on the basis of N observations. The
question then arises how to make use of these observations in the best
possible way, so that the conclusion we draw from these observations,
namely, whether the current is present or not, will have the best chance

(42)

1 For further details about the coherent continuous wave, which forms an essential
feature of the so-called MTI system, ¢f. Chap. 12.
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to be right. We shall say that the ideal observer always makes use of the
observations in this way, and we shall speak of the ideal observer criterion.
Of course, even the ideal observer can make only a bet, but it is the best
possible bet that can be made. The betting curve for the ideal observer
will be completely determined by the probability distributions for the
deflection r, so that the numerical value of the constant & can be deter-
mined. To illustrate this we shall now consider a few examples.!

+The “Off-on’’ Experiment.—Suppose that in a long series of trials a
signal of given strength is presented to the observer on the average during
half of the time. The observer does not know for any given trial whether
the signal is present or not, and he has to decide this on the basis of N
observations, which he is allowed to make during each trial. We shall
assume that the time intervals between the observations are long enough
to make the N observations of the deflection 7, 5, . . . , 7y independent
of each other. The problem is to find the criterion that in the long run
will lead to the smallest number of errors.

Let P(o,r) and P(s,r) be the probability distributions for a deflection
r without and with the signal. The functions P(o,r) and P(s,r) are
supposed to be known. The set of N observations ry, 72, . . . , rx during
one trial may be represented by one point in a N-dimensional “observa-
tion space.” Since the observations are independent, the probability of

finding a definite set ri, 7o, . . . , 7y is given by

P(o,r)P(o,rs) = - - Ployrw) (43a)
or

P(s,r)P(s,r2) - - - P(s,ry), (43b)

depending on whether the signal is off or on. A detectability criterion is
a division of the N-dimensional observation space in two regions, which
may be called the off-region and the on-region. If the point representing
the N observations in one trial falls in the off-region, the observer will
decide that no signal is present; whereas if the point falls in the on-region,
he will make the opposite decision. Clearly the probability for obtaining
the right answer is given by

Wis) = %[/ Ce /drl » e dry P(s,r1) - 0 P(s,rw)

(on)

+/ v /drl - -~ dryPlo,ry) - -+ ¢ P(O,TN)] (44)
(off)

1Tt should be pointed out that the ideal observer theory is practically identical
with the Neyman-Pearson theory of the best criterion for testing a statistical hypoth-
esis. Cf., for instance, J. Neyman, “Basic Ideas and Theory of Testing Statistical
Hypotheses,” J. Roy. Stat. Soc., 106, 292 (1942).
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where the symbols™(on) and (off) under the integral signs mean that the
integrations are to be taken over the on- and off- region. The factor 3 is
the a priori probability, which represents the fact that the observer knows
that in half of the total number of trials the signal is present. The ideal
observer will choose the off- and on-regions in such a way that the prob-
ability Wy is a maximum. Writing Eq. (44) in the form:

/n ﬁgz ) in on-region
Wi(s) = / / H P(o,r) drk =1 (45)
\

1 in off-region

One sees that since the common factor n P(o,r:) is positive W will be a
k
maximum if in the on-region H P(s,r;)/P(o,r;) > 1 and in the off-region
i

H P(s,r;)/P(o,r;) < 1. Or in other words, for the ideal observer criterion

3
the surface in the observation space, which divides the off-region from
the on-region, is given by the equation

= 1. (46)

Introducing the functions,
© N N
= PP _ P(S,T,—)
Q(s,y) = / / H P(siri) dry & [y z IOgP(o,r,-)]’
0 k=1 i=1
© N N P(s , )
R(s,y) = / - /l_[ Po,ry) dry & [y — 21 P, T.)]
0 k=1 i=1

where 3(z) is again the Dirac é-function, the probability of success for the
ideal observer can be written in the form

(47)

@ 0
W1, mae(s) = % [ﬁ dy Q(s,y) + /_ 3 dy R(S,y)]- (48)

We shall postpone the further evaluations of this expression until we have
considered some other examples. Clearly

® + o
dy Q(s,y) = /_ _ Iy Risy) = 1,] (49)
Qo) = E(oy).
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For s = 0, W1, m.(s) is therefore equal to § as it should be. For s — «,
Q(s,y) will be different from zero only for large positive y, where as RE(s,y)
will only have appreciable values for large negative values of y. For
s — = the integrals in Eq. (6) can therefore be extended to the complete
range from — » to 4 «; and because of Eq. (49) W) ma(s) will then
become 1. ’

The ‘“ Two-positions’ Experiment.—Suppose that in a long series of
trials a signal of given strength is presented to the observer on either of
two positions with equal a priori probability.! For any given trial the
observer does not know in which position the signal is, and he has to
decide this on the basis of the observations that he is allowed to make
during each trial. Call the two positions a and b, and suppose that the
observer makes N observations of the deflection at each position. A
detectability criterion is a division of the 2N-dimensional observation
space in an (a)- and (b)-region. If the point representing the 2N observa-
tions 7a1, Taz, - - - , Tany To1, Te2, - - - , Ten falls in the (a)-region, the
observer will decide that the signal was in the position a; whereas if the
point falls in the (b)-region, he will decide in favor of position b. Since
ull observations are supposed to be independent, it can easily be seen that
the probability for obtaining the right answer is given by

o0 N
Wa(s) = é/ R /H P(0,rar)P(0,72)
o 7 k-1

N
P(s,74:) .
l_[ Plored) for region (a)
X drax dm< e (50)
H P(s,ry:) for region (b)
(0 Tb, g

The ideal observer will choose the (a)— and (b)-regions in such a way that
W is a maximum. From Eq. (8) it follows that this can be done by

taking
N N
P(s,rai) _ P(s,r)

P(o,r.:) P(o,rs:)

i=1 i=1

as the equation of the surface, which divides the (a)- from the (b)-region,
and the probability of success for the ideal observer can then be written
in the form

+ = y
W ma(s) = f dy Qsy) | dui Ry, (51)

! This means of course that in the ayerage the signal appears an equal number of
times on either of the two positions,



Sec. 7-5] THEORY OF THE IDEAL OBSERVER 171

where the functions @ and K are defined by Eq. (47). For s = 0,
R(oy) = Q(o,y); putting

¥
g = /:) dle(syyl))
Eq. (51) becomes

! 1
Wamlo) = [ dse =}

as it should. For s — « the upper limit y in Eq. (9) can be replaced by
+ o, and because of Eq. (49) it is clear that for s — o, Wy wmu(s)
approaches unity.

The “m-positions” Experiment.—If the signal can appear on any one
of m positions with equal a priori probability, an easy generalization of
the reasoning for the two-positions experiment leads to the equation

+ = v m—1
Wawa) = [ av@on | [ anrew) (52)
for the probability of success for the ideal observer. It can be easily
seen that for s —» ©, W, m. approaches unity; whereas for s — o,
W, mer — 1/m, which is the a priori probability for finding the signal on
any one of the m positions.

Calculation of the Betting Curve.—For the further evaluation of the
functions W, ws(s), which represent the betting curves for the ideal
observer in the different experiments, the functions R(s,y) and Q(s,y)
must first be calculated. According to Eq. (13) one has!?

r2+.82
P(S,T) = %6_ 2w Io (T’_ﬁ/S))

- (53)

Po,r) = V—;’ e W,
With these functions it does not seem feasible to calculate @ and R from
Eq. (47) exactly. However, since we are mainly interested in the part of

the betting curve for which the signal is small compared with noise, we

can put
2Q2
Therefore
N N
_ P(sr) N8 S? .
v= 2 log Plor) ~ 2w + 4w z T (54)

i=1 i=1

18%? = a? + g2 The time chosen must correspond, of course, to the maximum of
the deformed pulse. The shape of the pulse is not taken into account. Fquation
(52) refers to the one-point ideal observer theory (Sec. 7-3).
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Calling

q_2W+NS2y’

Eq. (47) can be written

N
Qo) da = dg [ - fﬂP(sn)drka( ¥ 2,m)
- s
R@dg=dg [ - /ﬂP(ark)drk (-7 27
0

i=1

= Q(o,9) dg.

In this approximation the ideal observer bases his judgment therefore on
the distribution functions of the mean-square values of the N deflections
ry, Ty, . . ., Ty with and without the signal. Using Eqs. (53) the
integrals in (55) can be calculated exactly, and one obtains

N _ NS+ Ng (N—1)/2 NSg¥
Q(qu) = 2-7/ € 2w Lgi? IN.-l VV? y

(55)

Z (56)
1 N\"' N T
R(‘I) (N 1)1( ) We 2W7
from which follows
g= / dg Q(s,q) = 8% + 21,
: (57)

—_— e _ W
(e—9*= ﬁ dg (¢ — 9)"s,9) = 3 + W).
If N is sufficiently large, Q(s,q) can be replaced by a Gaussian distribution
with the mean value and variance given by Eq. (57), and the integrals
involved in the expressions (48), (51), and (52) for the betting curves in
the different experiments can then be expressed in terms of the error
function
Erf (z) = — dt e*.
2 VT /
The final results are (z = S2/2W):
1. Off-on experiment:

Wi ma(2) = 5 [1 + Erf (2\/\]/2 z)] (58a)

2. Two-positions experiment:

W, as(2) = §[1 + Frf (\/zﬁz ] (58b)
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3. m-positions experiment:
W wan(2) ! a1+ Bt (s 4 LevEY|[T (580)
momar(2) = ————— T e f [z 4+ 52 c
' 21 \/x / —e [ ( 2 >]

These expressions may be compared with the experimental betting
curves. In these curves the quantity plotted against the signal strength
1s usually not Wa, max but

P.(z) =

1

P (MW, max — 1). (59)
Clearly P.(z) will be zero for 2z = 0 and approach unity for z — .
Defining the minimum detectable signal as the signal strength for the
90 per cent point on the betting curve Pn(z), it is clear from Egs. (58) that

S? Cn

Za0 <2W>90 \/N (60)
The signal threshold is therefore inversely proportional to the square root
of the number of observations. The constant ¢, increases slightly with
the number of positions. Since each point on the betting curve decreases
in the same way with increasing N, it is clear that the width of the betting
curve which can be measured by the ratio of the z values corresponding
to the 90 and the 10 per cent point will be independent of the number of
observations. The width depends on the number of positions; it decreases
if m increases, or in other words the betting curve becomes steeper if the
number of positions increases. For a more detailed comparison with the
experimental betting curves, compare Sec. 8-9. It should be emphasized
that Eqs. (58) and their consequences hold only if the two approximations
(a, 2 < 1, even at the 90 per cent point of the betting curve, and b, N
sufficiently large, so that the Gaussian distribution can be used) are valid.
Especially the v/N-law expressed by Eq. (60) depends essentially on the
Gaussian approximation. For the two-positions experiment we have
made a detailed investigation of the errors cauged by the two approxi-
mations. For N greater than 20 we found that the error in the signal
threshold (defined by the 90 per cent point on the betting curve) is
probably less than 10 per cent, so that under usual circumstances the
error will be inappreciable.

7-6. Mathematical Appendix.—We shall collect here a number of
mathematical results, which are needed in different places throughout
the book.

The integrals occurring in Sec. 7-2 can all be performed by means of
the general formula

2r
/ d8 cos nfe—e°=? = 2x(—1)I.(a), (61)
0
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dt t*—I ,(at)e—*
0

r(# + V) <i>v
_ 2
=\ 2 /N g (— s+ Ly + 15— 4"7) (62)

T 2pT(v 4+ 1)

Here I.(2) is the Bessel function of purely imaginary argument, and
F(a, b; z) is the confluent hypergeometric function,! which is defined by

ala+1)22 | ala+ 1)(a + 2)23

Fa,b;2) =1 + +b(b+1)2' b+ DG + 2) 3!

+

The asymptotic series for F(a, b; 2) for large negative values of z is

) a—b+1)

F(ay b; Z) F(b a) (_2)7,1 [1 - (l—( 2

+@e—-b4+ a—>b+2
yaltDe=bt e ) ] -
Often needed are the relations
e“F(a,b;2) = F(b — a,b; —2), (65)
d R )
EF(G’ b; 2) —EF(a—i- 1,b+4 1;2), (66)

and the recurrence relations

ZF]vl = bFLo - bFo,o,
G,Fl'l = (a - b)Fo_1 + bFo,o,
abFio = bla + 2)Fo0 — 2(b — a)F, (67)
aFio0= (z+ 2a — b)Foo 4+ (b — a)F 1,0,
(b — a)eFor=blz+b— 1)Foo+ b1 — b)Fo,,

where the symbol F;; is an abbreviation defined by
Fk_z = F(a + k,b + Z;Z).

If a is a negative integer, F(a, b; z) reduces to a polynomial in z. If both a
and b are positive integers, F(a, b; z) can be expressed in exponential
functions and polynomials in 2. If @ is a half integer and b is an integer,
F(a, b; 2) can be expressed in Bessel functions 7.(z) and exponential
functions of z. Since in the literature the results are often expressed in
this way, we shall give here a list of some of these identities:

! The usual notation is 1Fi(a, b; 2). For the integral (62) see G. N. Watson, Theory
of Bessel Functions, Cambridge University Press, 1944, p. 394.
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CHAPTER 8
PULSE TRAINS IN INTERNAL NOISE

This chapter will present experimental and theoretical results dealing
with the determination of threshold power for a signal consisting of a
train of pulses. A superheterodyne receiver will be assumed in which the
noise is of the variety discussed in Chaps. 4 and 5; for threshold signals in
external noise the reader is referred to Chaps. 11 and 12. Furthermore,
in the interests of simplicity, only the results obtained in using a deflec-
tion-modulated, or type A, oscilloscope will be considered here. The
intensity-modulated display is discussed in Chap. 9.

8-1. Standards for the Measurement of Signal Power.—The compari-
son between signal and noise power is most conveniently drawn in the i-f
anplifier after the restriction in i-f bandwidth is made. At this point, the
signal-to-noise power ratio is affected by both the i-f bandwidth and the
noise figure of the receiver; therefore, both these quantities must be
accurately known in order to calculate the input power ratio. This
calculation, however, is very simple. As peinted out in Sec. 51 the
noise power Py in the receiver at any point is given by the relation

PN=GFTkTAf, (1)

where @ is the total power gain of the receiver up to the point in question,
Fr is the noise figure of the receiver expressed for a particular temperature
T, and k is Boltzmann’s constant. Although G is a function of the
frequency, a mid-frequency value will suffice here. To be absolutely
correct, the bandwidth Af must be measured in a particular way; it is,
in fact, calculated from the relation

of = f " azdf, )

where A, is the amplitude response of the receiver at a particular fre-
quency f, normalized to unity at midband. Equation (2) is introduced
because the various noise components in the receiver are independent,
hence add in power or in the squares of the amplitude functions. This
assumes (nearly always validly) that the original noise is uniformly dis-
tributed throughout the frequency range.

The measurement of bandwidth by means of Eq. (2) is tedlous and

usually difficult. It is much more convenient to measure the bandwidth
176
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simply by the frequency interval between points at which the receiver
power response is one-half its maximum value or its amplitude response
it 4/2/2 times its maximum value; this half-power bandwidth is denoted
by B. The difference between B and Af depends upon the shape of the
response curve; this in turn depends upon the type of receiver and type of
interstage coupling. Because of the linear relationship between r-f
and i-f voitages in the superheterodyne receiver (see Sec. 22) we may
assume the bandwidth limitation to occur in either the r-f or i-f amplifier.
It is customary in either case to use a number of simple networks that
restrict the bandwidth; these networks are usually single-tuned, that is, a
single inductance-capacitance-resistance mesh, or they are multiply
tuned, that is, a number of coupled resonant meshes. The coupling
adjustment on multiply tuned circuits is often made so that the response
is constant to the highest possible order in the neighborhood of midband;
this has several advantages besides giving a reproducible and calculable
response curve. For a number of arrangements the differences between
half-power bandwidths B and bandwidths Af determined from Eq. (2)
are shown in Table 8-1, taken from Stone’s report.!

TasLE 81.—CoMPARISON OF NoOISE BANDWIDTHS AND 3-DB BANDWIDTHS

Type of coupling Noise band- 3-db band- R
cireuit No. of stages | ™ iith af width w | Tatie,db
Singly tuned 1 3.14 2.000* 1.95
2 1.57 1.286 0.85
3 1.18 1.02 0.64
4 0.985 0.868 C .55
Doubly tuned 1 2.221 2.000* 0.46
2 1.67 1.604 0.2
Triply tuned 1 2.096 2.000* 0.2
Quadruply tuned 1 2.038 2.000* 0.08
Quintuply tuned 1 2.020 2.000* 0.04

* Taken by definition.

It can be seen that the two types of bandwidth determinations are nearly
alike. Since the half-power bandwidth is so much easier to measure, only
the half-power bandwidths B will be used in this chapter.

Throughout the following discussion one further assumption will be
made regarding the bandwidth B, namely, that it applies equally well to
both signal and noise. This assumption is completely justified if the

1 A. M. Stone, RL Report No. 708, June 22, 1945,
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filter that 1s substantially responsible for B follows the source of noise.
This condition prevails in nearly all microwave receivers and in nearly all
well-designed receivers employing r-f amplification. For receivers in
which this is not true, i.e., where the signal bandwidth is less than the
noise bandwidth, a reduction in noise, without an accompanying loss in
signal response, can be brought about by the use of a final i-f filter. For
best results this final filter should be made to restrict the noise bandwidth
to the same value as the signal bandwidth.

If we now measure the signal-to-noise power at some point in the
receiver, we can calculate the input noise power by means of Eq. (1),
noting first that the gain G is the ratio of signal power P in the receiver
to the available input signal power Pg,. Thus,

Pun = L2 FRT f; 3)
N

and as before, Af can be replaced by the approximate half-power
bandwidth B.

The advantage in using Eq. (3) to calculate input signal power is
considerable. The noise figure is measurable by methods that do not
involve large amounts of attenuation; one of these methods, which is
quite accurate, simply compares receiver noise with noise of known power
generated by a diode (see Chap. 5). The measurement of receiver band-
width is straightforward ; the comparison of signal and noise power is also
usually straightforward, although certain precautions may be necessary.
These precautions will be discussed when a complete experimental system
for determining threshold signals is presented. The input power can
thus be measured with good accuracy even though it is in the neighbor-
hood of 1015 watt; this measurement would be difficult to make directly
by means of a signal generator and a long-range calibrated attenuator.
Furthermore, the ratio Ps/Py, together with the bandwidth, determines
the signal perceptibility. Two receivers having the same bandwidth and
same shape response curves but different noise figures will have different
signal threshold powers measured at their input terminals but, in the
threshold condition, will show the same values of Ps/Py. Therefore, in
order that results may be universally applicable to all receivers, it is
desirable to express threshold signals in terms of noise power in the
receiver after the bandwidth restriction has occurred.

Up to this point a method has been outlined whereby the threshold
signal power may be computed from the receiver noise figure, bandwidth,
and a universal parameter, which is, in fact, the signal-to-noise power
ratio. It has been tacitly assumed that the signal is a train of pulses,
which is finite in length because of the limited time in which an observa-
tion must be made or because of scanning limitations. Scanning has
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been discussed in Chap. 2 and is of special importance when the intensity-
modulated display is used. It has not yet been stated, however, how
the signal power can be measured or, more important, how it can be
compared with receiver noise power. Furthermore, it has not yet been
pointed out how the signal power can be adjusted to correspond to the
threshold condition. These questions will be answered in the following
sections.

8-2. A (Synthetic) System for Experimental Purposes.—Since it will
be useful in the discussion of experimental results to be presented in the
following sections, a block diagram of a (synthetic) system is shown in
Fig. 8:1. This system has been used at one time or another by Stone!
and Ashby, Meijer, Stone, Sydoriak, and Lawson® to investigate the
factors involved in signal discernibility for an A-scope display. It con-
tains a pulse generator and synchronization circuit so that a series of
pulses of controllable length, spacing, and number can be produced and
the pulse power can be accurately compared with receiver noise power.
In addition, the receiver, though a conventional superheterodyne, is
arranged so that the i-f bandwidth is variable (in steps) over a wide
range. A description of the various components and their functions
follows.

The production of a series of r-f pulses having all the characteristics
of a mathematically perfect series of pulses is a goal yet to be achieved.
Usually the emitted r-f energy has frequency modulation associated with
it, and the pulse shape is not rectangular. Furthermore, it is usually
found that the r-f pulse power is affected by the duty ratio or fraction of
time during which the oscillator is energized, even though the voltages of
the oscillator power supply are held constant. This effect is usually due
to internal heating of the oscillator elements; variations in average heat
cause variations in electrode spacing with consequent change in oscillator
efficiency. The difficulty of frequency modulation mentioned above can
be solved by taking extreme care with the shape of the modulator pulse
used to excite the oscillator; the difficulty regarding the duty ratio was
solved in the system shown in Fig. 8-1 by actually maintaining the duty
ratio of the oscillator itself constant. This condition is achieved
essentially by operating the signal generator at the highest PRF that is
to be used and by operating the A-scope sweep at an equal or lower
repetition frequency. Thus the information presented on the A-scope
recurs at any desired sweep repetition frequency, or SRF; at the same
time it is certain that the pulse power from the signal generator is inde-
pendent of the SRF. The variation in duty ratio brought about by a
change in pulse length, however, still exists in this system; hence for each

1 A. M. Stone, RL Report No. 708, June 22, 1945.
2 Unpublished.
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F1a. 8:1.,—Block diagram of synthetic system. The parameters controlled in each com-
ponent are shown in parentheses.
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pulse length a calibration between pulse power and receiver noise power
must be made. The independent control of the PRF and SRF has the
additional advantage that for some experiments it is useful to operatc
the A-scope sweep more often than the signal pulse. In this way the
pulse may appear on every other, every fourth, etc., sweep. This form
of operation is useful in determining one of the effects of mixing the video
signals of two or more systems. More will be said about this point later.
There is therefore found in the top left-hand corner of Fig. 81 a syn-
chronization unit that produces timing pulses determining both the PRF
and SRF; these frequencies must be harmonically related to fulfill the
functions described above. For convenience, the unit actually built for
tests contains a 100-ke/sec crystal oscillator to provide initial stable
pulses. A series of frequency-dividing stages is then used to halve each
successive frequency. The resulting unit has available output trigger
pulses with repetition frequencies from about 1 c¢ps up to 100 ke/sec;
all these frequencies are harmonically related and can be used inde-
pendently to form the PRF and the SRF.

It has been noted that the signal is to consist of a finite train of pulses;
the length of the train is determined by various factors, often chiefly
connected with scanning. As we shall see in the following sections, the
length of the pulse train, which will be called the signal presentation
time 6, has a profound influence on signal threshold power; therefore, for
experimental purposes it must be controllable over a considerable range
of values. To prevent the oscillator duty ratio from being affected by 8
the following scheme was devised. The signal position, or range, on the
A-scope is adjusted so that the signal normally does not appear; i.e., it is
displaced outside the limits of the A-scope sweep. During the interval 6
the signal range is changed to bring it into the visible region on the
A-scope. This procedure does not affect the duty ratio yet presents the
signal on the A-scope only during the desired interval. The apparent
signal range is, of course, fixed by the time delay between the timing
pulse operating the A-scope sweep and the timing pulse operating the
signal generator. The device controlling the signal presentation time is
shown in the upper right-hand corner of Fig. 8-1. In addition to con-
trolling this parameter it also functions, if desired, to provide a warning
signal to the observer just prior to the signal presentation interval 6.
Since the function of this unit is to set the length of a train of pulses,
accomplished in a scanning system by azimuth selection caused by the
rotating antenna beam width, the unit is labeled ‘“azimuth selector.”
Indeed, for experiments with the PPI, to be discussed in Chap. 9, it
becomes an actual azimuth selector.

In addition to presenting the signal on the A-scope for an interval ¢
it is desirable to present it at one of a number of defined range positions,
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This is a necessary part of the method by which threshold signals are
determined. It has been pointed out in Chap. 7 that a theoretical
‘“betting’’ curve exists; there is also an experimental betting curve with
similar characteristics. To determine this experimental betting curve it
has been found most desirable to obtain correlation results between the
observer’s estimate of signal range and the actual signal range. So that
the observer may be unaware of the actual signal position, it is necessary
for the signal to occur at one of several designated range positions. The
chosen position must be independent of previous selections and must be
selected by chance. More will be said about this procedure below, but
it is pertinent to remark here that a synchronization unit is necessary to
perform this random range selection and that control of the number and
spacing of the positions is also required. This unit is shown in schematic
notation at the top of Fig. 8-1.

One other synchronization unit shown near the top left-hand corner
of Fig. 8'1 needs explanation. It has been found that, when very small
values of 8 are used, the total number of A-scope sweeps of noise, with
which the signal competes, extends beyond the interval 8. To test this
point a commutator was used that allows the A-scope to be triggered only
during the given interval 4; under these conditions the signal presentation
time is still §, and only during this interval is anything shown on the
A-scope. The significance of this commutator will be discussed in
subsequent sections.

The receiver used in the system of Fig. 8-1 is a conventional microwave
superheterodyne using a crystal converter. To the r-f input terminals of
this converter are coupled the output of the local oscillator, the pulsed
signal generator, and a c-w r-f generator, which is used in the comparison
of pulsed signal and noise power by a method to be described below. The
c-w generator and pulsed signal generator have associated with them
respective attenuators in their output lines. These attenuators, of the
waveguide-beyond-cutoff variety, have extremely good relative accuracy,
but the absolute values of the attenuation are not easily measurable.
Both the signal and c-w generators are well shielded; this precaution is
essential in making any measurements at levels approaching receiver
noise. The part of the receiver following the converter is of the greatest
importance in the experimental work; it is here that there are many param-
eters to adjust in the determination of optimum design. Some of the
receiver parameters that may be expected to have an effect on signal
threshold power are

1. I-f bandwidth.

2. Shape of i-f bandwidth.

3. Type of second detector.

4. Video bandwidth.
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5. Shape of video bandwidth.

6. Video nonlinearity such as that caused by saturation or limiting.

Presumably only the most important of these variables were, for
simplicity’s sake, investigated. It was expected that the shapes of i-f
and video bandwidths would not greatly affect threshold signals, provided
the shapes were those characterized by properly adjusted filters. There-
fore, in the receiver shown in block-diagram form in Fig. 81, the i-f and
video bandwidths were determined by filters of types that are commonly
used but are intermediate in complexity between the simple single-tuned
circuit and the highly complicated multiply tuned circuits. The i-f
bandwidth is determined essentially by a single double-tuned stage,!
whereas the video bandwidth is determined by a single shunt-peaked
section. In addition to fixing these parameters a type of second detector
was chosen and not thereafter varied. It is of the linear, or envelope,
type, which in receivers is almost universally used to the exclusion of
other types. Occasionally a parabolic, or square-law, detector is found;
however, there is now some evidence that the type of second detector has
only a slight effect on the signal threshold power. This will be brought,
out in Sec. 8-7. Therefore, in summary, the receiver consists of a con-
verter, an i-f amplifier whose gain and bandwidth are controllable, a
linear second detector with an output meter to record the average video
level, and a video amplifier whose bandwidth and limit level are con-
trollable. The output line of the video amplifier is connected directly
to the A-scope or, for intensity-modulated measurements, through an
additional limiting stage to the PPI. The additional limiting stage is
desirable so that the A-scope and PPI can be operated at different limit
levels.

The description of the (synthetic) system is now complete except
that the method by which the signal power is compared with noise power
has not yet been explained. It might be thought that the signal power
could be measured relative to noise by the contribution each makes in the
output of the second detector, account being taken of the signal duty
ratio. This is not the usual case; where the duty ratio is small, the
contribution of a signal compared with that of the noise is unnoticeable.
As the signal is increased in size to produce a measurable contribution,
the signal pulses in the i-f amplifier become large enough to saturate the
amplifier, thereby invalidating any measurement of the power. To
overcome this difficulty the system shown in Fig. 81 was devised; the
pulsed signal is first compared in power with a c-w generator, which, in
turn, is compared with receiver noise. This latter comparison is easily
made because the duty ratio of the c-w generator is unity. The pro-

1 A. M. Stone and J. L. Lawson, “Theory and Design of Double-tuned Circuits,”
Electronic Ind., April 1946, p. 62.
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cedure is to adjust the receiver gain so that the second-detector output
meter reads some fiducial value due to receiver noise only. The e-w
generator attenuator is next adjusted so that the output meter increases
its reading to 4/2 times the fiducial reading. At this point the power in
the i-f amplifier, produced by the c-w generator, is just equal to the noise
power in the i-f amplifier. The factor! 4/2 comes about because of the
linear detector; a doubling of input power results in a change in output
amplitude of A/2. This procedure is valid only when there is a really
linear second detector; this point can be checked experimentally by
calibration against the attenuator associated with the c-w generator. To
make the determination valid, receiver noise is made negligible by reduc-
ing the gain of the i-f amplifier.

The method by which the c-w generator power is made equal to
receiver noise power has just been outlined, but the way in which the c-w
power is compared with the signal power has not yet been mentioned.
This comparison can be made by the following procedure. With the
receiver gain reduced to the point that noise is negligible the signal is
adjusted to an easily measurable amplitude on the A-scope. The c-w
generator power (tuned to the mid-frequency of the signal) is then
increased slowly until a flutter or “beating” effect in the signal is
observed. This phenomenon is due to the addition of signal and c-w
voltages in random phase from pulse to pulse. When the c-w and pulse
voltages are in phase, the resulting video signals ‘““beat” up to the
maximum value; when they are out of phase, the video signals beat down
to their lowest value. As the c-w power is increased, the signal on the
A-scope is observed to beat lower and lower until it just beats down to
the baseline. The c-w power that just produces this effect is easily repro-
ducible, since the visual extension of the baseline can be estimated with
great accuracy. A c-w power greater than this critical value causes the
signal to beat below the baseline. This statement may seem surprising
at first, but it must be remembered that the baseline does not represent
zero video voltage but actually represents the steady rectified voltage
produced by the c-w generator. Let us, therefore, examine the condi-
tions under which the signal ““beats” just to the baseline; this is clearly a

1 Strictly speaking, this factor is not entirely correct because of the difference in
the probability distributions of the amplitudes of noise and ¢-w signal. The output
of the linear detector records the average rectified amplitude, which is proportional to
the square root of power only for voltages that have similar amplitude distributions.
The +/2 factor would apply strictly only to the case where rms voltages are recorded;
therefore a correction factor should be applied that comes in because of the difference
between rms and average voltages. For noise, this factor has been evaluated; to
cqualize ¢-w and noise power the fiducial reading of the output meter should be
increased by a factor of 1.45 with the addition of c-w power instead of by the stated
“factor of 4/2.

-
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condition in which the difference between signal and c-w voltage during
the pulse is just equal to the c-w voltage represented by the A-scope base-
line. This observation leads to the cbvious conclusion that the signal
pulse voltage is just twice the c-w voltage or that the signal power is just
four times the c-w power. This condition, incidentally, is independent
of the detector linearity; it requires only that the detector response be
independent of i-f signal phase. The procedure, therefore, affords a
high-precision method by which the signal power can be compared with
the c-w generator power. In the use of the beating technique one impor-
tant precaution must be observed, however. The i-f and video amplifier
must have adequate bandwidth, enough properly to delineate the signal;
otherwise the transient effect at the beginning and end of the signal
arising from inevitable phase changes in the i-f voltage will cause a false
reading. This effect is unimportant as soon as the i-f bandwidth is larger
than about twice the reciprocal of the pulse length; the video bandwidth
should likewise be correspondingly large. Therefore, in the comparison
reading between signal and c-w voltages only the wide-band i-f amplifier
connection should be used.

8-3. The Determination of Threshold-signal Setting.—A system has
been described in which, once the attenuator setting is chosen for a
threshold signal, the signal power can be measured in convenient units.
This process is straightforward and requires no further refinements.
However, the procedure by which the threshold signal is established is one
in which considerable latitude exists; each investigator has usually seen
fit to use a new procedure that generally has yielded slightly different
results. Apparently the process first used was to ask a number of
observers to estimate the minimum detectable signal; the threshold signal
was then assumed to be the average of their answers. It was found that
the individual estimates differed by large factors, indeed so large that it
was nearly impossible to obtain reliable averages. Furthermore, a given
observer would usually change his estimate considerably from day to day,
depending on such factors as A-scope trace intensity, focus conditions,
and his own state of mind. His estimate of minimum detectable signal
would also be greatly affected by such factors as his previous training and
by the degree of certainty that was required of his answer. Because
of this sort of difficulty a method was sought that did not depend on the
observer’s opinion. The type of answer required of the observer and the
consistency with which his determinations were found to be repeated at a
subsequent date indicate that the procedure outlined here constitutes
such an objective method. Furthermore, different observers, when
properly trained, all obtain virtually the same results. The method is
essentially one in which the observers’ answers are correlated with some
desired parameter of the signal. Tn the case of the A-scope such a param-
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eter is the range position of the signal; in the case of the PPI azimuth
position could also be used. In the former case the signal is made to
appear at one of several definite range positions, and the observer is
asked to guess the correct position. His guesses are then correlated with
the actual known positions in order to find out whether or not the signal
is perceptible. This procedure minimizes the judgment required from
the observer; he is not required to judge whether or not the signal is
visible but only which of several given positions is most likely to contain
the signal. Since this type of correlation is statistical in nature, a num-
ber of observations must be made; in order that each guess be independent
of preceding observations, the range position of the signal must be ran-
domly selected. It is expected theoretically, and found experimentally,
that the signal threshold power depends upon the number and spacing of
these range positions. A large number of positions increases the threshold
power slightly; a small number of positions complicates the analysis
because of chance lucky guesses. For most of the experiments to be
described in the next two sections six positions have been used; where the
effect of number of positions is studied, however, this restriction obviously
does not apply.

It is found experimentally that there is a “twilight’’ region where the
signal can be detected only part of the time. The fraction of time in
which the signal is seen can be obtained from the correlation between
guessed position and actual position as outlined above; this fraction
increases continuously with increasing signal. The result is analogous to
the ‘“betting’ curve of the theoretically ideal observer described in
Chap. 7 and indeed appears to differ from it in only two respects; viz.,
the actual observer appears to require a slightly higher value of signal
power than the ideal observer, and the betting curve seems to have a
different width (where the width is defined by the relative signal power
change from 10 to 90 per cent correlation). The width of the twilight
ragion is usually smaller than that of the ideal observer, although if
conditions of severe video limiting are experienced, the experimental
twilight zone becomes very large. These two general observations are
not at all surprising. For example, the first amounts to saying that a
human observer is not so efficient as the theoretically ideal observer. The
second observation is expected when due allowance is made for the effects
of contrast limitation in the human observer and for saturation effects
in the video system. These points will be considered in later sections.

A typical experimental betting curve is shown in Fig. 8-2 in which the
correlation fraction, after the theoretical number of chance lucky guesses
is subtracted, is plotted against relative signal power. The signal power
is expressed in decibels relative to the noise power in the receiver with a
1.0-Mc/sec i-f bandwidth; and as can be seen, the conditions in the
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experiment were chosen so that the entire betting curve occurs for signals
smaller than noise power. Each experimental point on the curve was
obtained from 20 observations (guesses); hence there is still considerable
statistical scatter in the points. A

reasonably smooth curve, however, 10 3
can be drawn through the points, /
and it is not difficult to specify the 08 /
signal power for a given correlation 5 50 j
fraction. This specification canbe 3 06

made to within 1 or possibly 0.5 db _§ /

in relative signal power. Ascanbe § o4

seen from Fig. 82, however, such § /30 o2

a specification requires about 100 . 02 40

individual observations; unfortu- /

nately this is the price that must be 0 /

paid to achieve a quantitative -14 -12 ~10 -8 -6

Signal power in db relative to noise
power in a band equal to 14
Fia. 8-2.—Experimental ‘betting”’ curve.

measurement of threshold signal.
The total time spent in obtaining
experimental data for threshold
signals is therefore considerable; yet it is felt that the final results can be
trusted only when such pains are taken.

So that the reader can appreciate the type of measurement just
described, a series of photographs typical of an actual experiment have
been made of an A-scope with six possible signal range positions. These
are shown in Fig. 8-3 with the six possible positions shown below each
picture as a row of tiny white dots. The conditions under which these
photographs were made are unimportant in the present discussion. In
Fig. 8:3a one photograph is shown where the signal occurs at randomly
selected positions but in which the signal-to-noise power ratio was set at
6 db. In Fig. 8-:3b the same conditions apply except that the signal-to-
noise power ratio was set at 0 db. Likewise, for each of the series shown
in Fig. 8-3 a different signal power was used. It can be seen that as the
signal is reduced in size, more and more difficulty is experienced in
locating it. The reader is invited to try his hand at guessing the correct
positions for all the photographs in order to construct abetting curve; the
correct answers are given on page 188.1 A sample betting curve, derived
from Fig. 83, is shown in Fig. 84, in which the correct number in each
category is plotted against the relative signal power. This number is
plotted directly, without first subtracting the chance lucky guesses; the
procedure gives a slightly distorted betting curve but is simpler to use in
illustrating the results. The coded points shown in this figure are those
obtained by four independent skilled observers.

1 Signal position answers to Fig. 8-3:
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Because of the existence of a twilight region for signal threshold power
it is not possible to speak of a threshold signal without referring to the
entire betting curve. This is an extremely tedious procedure; it is
ordinarily sufficient to refer to some characteristic region of the betting
curve. As an example we may refer to the signal power required to give
a correlation of 50 per cent; this can be used as a criterion of threshold

Photograph Position Photograph | Position “ Photograph Position
8.3a 6 8.3d 1 4 8.3f 1 1
8.3b 1 4 8.3d 2 3 8.3f 2 4
8.3b 2 5 8.3d 3 6 8.3 3 5
8.3b 3 1 8.3d 4 5 8.3f 4 2
8.3b 4 2 8.3d 5 3 8.3f 5 3
8.3b 5 4 8.3¢ 1 1 8.3g 1 3
83 1 5 8.3¢ 2 6 8.3g 2 5
8.3c 2 4 8.3¢ 3 2 8.39 3 2
8.3c 3 1 8.3¢ 4 5 8.3g 4 2
8.3c 4 3 8.3¢ 5 4 839 5 6
8.3c 5 1

power. An objection to the use of the 50 per cent point, however, is that
it is far from the point at which the observer thinks he can see the signal;
the latter signal strength is probably nearer the one operationally useful.
For this reason it is usually more desirable to specify the signal required

(a) Signal = noise + 6 db
F1a. 8:3.—Oscilloscope photographs with signal in random positions.

to give a large correlation; a figure of 100 per cent would be nearly ideal
were it not for the extreme difficulty of finding it. It seems from Fig.
8:2 that a correlation of 100 per cent is reached rather abruptly, yet the
shape of the betting curve between 80 and 100 per cent correlation is not
well defined by the experimental points; indeed the statistical fluctuations
in this neighborhood are so large that the shape of the curve as drawn is
not necessarily correct. Strictly speaking, it is likely that a correlation
of 100 per cent is never quite achieved, analogous to the situation in the
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(b) Signal = noise (¢) Bignal = noise — 1 db
F1g. 8-3.—Oscilloscope photographs with signal in random positions. (Continued.)
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(d) Signal = noise — 2 db (e) Signal = noise — 3 db

Fra. 8:3.-—Oscilloscope photographs with signal in random positions.

(Continued.)
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(/) Signal = noise - 4 db (g) Signal = noise — 5 db
F1a. 8-3.—Oscilloscope photographs with signal in random positions. (Continued.)
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betting curve of the ideal observer described in Sec. 7-4. For all practical
purposes, however, the correlation becomes 100 per cent very abruptly.
Nevertheless, because of the statistical difficulty of determining a practi-
eal 100 per cent point, it is felt that a correlation of 90 per cent represents
a more useful figure. At this correlation a skilled observer can feel that
he really sees the signal at least a significant part of the time. It will be
convenient to refer to the sign=l power required to yield 90 per cent
correlation as Pg,, which will also be considered to be the threshold signal
unlegs explicitly stated otherwise. The second subscript will always refer
to the percentage correlation, so that if other correlation criteria are
temporarily used, their meaning will be obvious.

; o

/i
0
-8 -6 -4 -2 0

Signal power in db relative to noise power
in a frequency band equal to 1/¢

¥1G. 8-4.—S8Sample betting curve derived from photographs of Fig. 8:3.
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N

Number of correct choices
of signal position
w

—

System paramcters: Key:
Br =1.1 A Observer A
87 = approximately optimum [ Observer B
PRY = 400 pps O Observer C
Exposure time = 0.1 sec. @® Observer D

It is desirable at this time to reiterate the point of view that is taken
in setting up the procedure for determining threshold signals. The aim is
to establish accurate eriteria by which the effect of various system param-
eters on threshold signal can be studied. It is not desired to study the
observer himself, especially as to methods of training or methods that
would make his job easier or less tiring. It is true, however, that certain
characteristics of the observer become inextricably entangled with param-
eters of the system, and these characteristics can be most readily
studied by means of the suggested correlation technique. Most impor-
tant of all, no real attempt has been made to study the observer’s reactions
to different situations. We must recognize that an observer searching
for a weak signal will not report such a signal unless he is psychologically
sure of its existence. The strength of signal required for psychological

-




SEc. 84] SYSTEM PARAMETERS AND SCALING 193

certainty depends upon many factors. Some of them are (1) the impor-
tance of correctly reporting the signal, (2) the number of mistakes that
have been previously made, (3) the observer’s state of alertness, (4)
previous amount and type of training and practice, etc. These factors
are extremely important in any operational situation; however, they are
not pertinent to a discussion of the system parameters that affect threshold
signals.

8.4. System Parameters and Scaling.—Let us list the various system
parameters that are expected to have an effect on signal threshold power.
It is not intended to be a complete list, but it probably contains most of
the important quantities that pertain to a relatively straightforward
receiving system containing an A-scope indicator. For more complicated
systems, such as the MTI system described in Sec. 11-5, it is obvious that
additional parameters will be introduced. In Table 8-2 there is listed
beside some of the parameters a symbol that will represent that param-
eter. The variables are listed in groups, each group generally being
associated with some part of the receiving system.

The scanning variable is of special importance in the discussion of
intensity-modulated indicators presented in Chap. 9. For the A-scope,
however, matters will be simplified by neglecting the shaping of the
pulse train resulting from the antenna beam pattern. The pulse train
will be assumed to be of constant amplitude but of length 8 as is listed in
Item 5 of Table 8-2.

A blind investigation of the effect of each variable for various condi-
tions of all the other parameters would assume prodigious proportions
indeed, but a rough estimate of the number of observations required to
complete the problem can be made. Assuming that each parameter is to
be set to each of five values and that a single determination for threshold
signal requires about 100 observations (see Fig. 8:2), we arrive at the
astonishing result that about 10'¢ observations need to be made. This
fact is convincing evidence that every effort must be made to simplify
the problem and to investigate only those parameters which are expected
to have a relatively pronounced effect on threshold signals. This
simplification will be carried on to a large extent, and the justification for
such simplification is indicated below. The numbers preceding the
following paragraphs correspond to items in Table 8-2.

1. The pulse power Py is, in fact, the dependent variable that we wish
to find. Tt is affected, of course, by the definition of threshold
signal made in the preceding section as well as by all the other
system parameters.

3. The pulse shape is relatively unimportant. Almost all pulses in
common use have a rectangular shape; for this reason other shapes
will not be considered.




194

PULSE TRAINS IN INTERNAL NOISE

[SEc. 84

6. The receiver noise figure F has been disposed of in Sec. 8-1, although
a knowledge of its value is required to compute final signal

threshold power in absolute units.

8. The shape of the i-f bandpass curve has already been discussed in
Sec. 8-2; it is believed that its effect is minor as long as it arises from
an “approved”’ type of i-f coupling circuit.

TABLE 82.—PARAMETERS AFFECTING SIGNAL VISIBILITY

Parameter Symbol Remarks
The signal;
1. Pulse power.................. Ps
2. Pulselength.................. T
3. Shape of pulse
4, Pulse repetition frequency.. ... I Abbreviated PRF
5. Duration of pulse train........ [ Signal presentation time
The receiver:
6. Noise figure.................. F Abbreviated NF
7. I{f bandwidth................ B
8. Shape of i-f bandpass curve
9. Type of second detector.......| ...... Linear, quadratic, ete.
10, Video bandwidth............. b
11. Shape of video bandpass curve
12. Video limiting or saturation
13. Receiver power gain........... q Affects output noise (and signal)
level
The indicator:
14. Trace brightness
15. Focus conditions
16. Direction of sweep............| ...... Vertical or horizontal
17. Sweep rate or speed...... ... .. s
18. Deflection sensitivity..........| ...... Measured perpendicular to sweep
19. Screen material...............| P1, P7 | Rate of decay—P1 fast (or instan-

20. Number of possible signal posi-
tions
21. Spacing of signal positions

The human observer................

Videomixing.........cooovunneen ..

Seanning..... ...coiiiiiiiiin. ..

taneous), P7 slow (few seconds)

No properties listed here, although
they will be stated and discussed
later

No specific property listed here,
although the outputs of several
systems can be mixed in various
ways; this has an effect on thresh-
old signals in each system

It is assumed the pulse train is of
constant amplitude for a duration 6.
Scanning actually causes a varia-
tion in pulse amplitude during the
pulse train
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9. The type of second detector also has been mentioned in Sec. 8-2;
only the linear detector was experimentally investigated, although
in this chapter the quadratic detector is considered from the
theoretical point of view. If the signal is smaller than noise
power—a condition generally experienced in threshold determina-
tions—the linear and quadratic detectors are very nearly alike in
signal perception sensitivity.

11. Analogous to the case of the if bandpass curve shape, it is
expected that the shape of video bandpass curve has little effect
on threshold signals. To be explicit, the shape of the video
bandpass curve will be assumed to be that of a single shunt-
peaked stage. This means a power-response law proportional
to 1/(1 4 f4), where f is the frequency.

Of the remaining quantities it is possible to combine terms 6, 12, 13,
and 18 into two useful and suitable variables. The noise figure (6),
receiver gain (13), and video limiting voltage (12) essentially fix the
fraction of the video noise distribution that is lost in the limiting process.
It is therefore more useful to express the limit level directly in terms of
the average noise voltage (before limiting); this ratio will be denoted by
the symbol L.

Limiting is important only when a substantial fraction of the noise
probability distribution is affected. Such limiting needs to be introduced
only when an intensity-modulated display, such as the PPI, is used; it is
necessary to prevent defocusing of the beam spot on the tube face for
large noise fluctuations. For this reason the discussion of limiting will
be deferred until the next chapter, which deals with results obtained from
intensity-modulated display systems.

The noise figure (6), receiver gain (13), and A-scope deflection sensi-
tivity (18) fix the average ampiitude of noise as seen on the A-scope. It
is more convenient to refer directly to this parameter than to the combina-
tion of system characteristics from which it is derived.

Let us consider a particular set of conditions where we examine in
detail the geometrical picture on the face of the A-scope. This geo-
metrical picture is composed of a number of overlaid traces; each trace
for the purpose of visual inspection may be considered “laid onto’’ the
screen instantaneously. There is a certain noise fluctuation in each trace
whose spatial appearance is influenced by the receiver bandwidths B and
b, by the average noise deflection, and by the A-scope sweep speed s.
The actual appearance of the signal may be regarded as caused by pulse
length 7, the receiver bandwidths B and b, and the signal-to-noise power
ratio. Now let us consider the effect of an increase in pulse length by a
factor g and inquire if there are similar changes that can be made in other
parameters so that the geometrical picture on the A-scope may be left
essentially unchanged.
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If the pulse shape as viewed on the A-scope is to remain unchanged,
the receiver bandwidths must be scaled dowr by a factor 8 and the sweep
speed must also be scaled down by 8. Since the total i-f noise power in
the receiver is proportional to the i-f bandwidth, the receiver gain G must
be increased by the factor 8. This reasoning leads to the conclusion that
for a given signal deflection the input signal power must be reduced by 8.
There is in addition one minor change that is necessary to keep the total
trace intensity constant; because of the reduced sweep speed a reduction
in the cathode-ray-tube beam current must, be made, again by a factor 8.
It is clear that, when all these scale changes are made, the appearance of
the A-scope face will be unchanged. We may write the old and the new

TABLE 8:3.—VARIOUS SCALING PARAMETERS

Old parameter Scaled parameter (Invariant parameter
Pulselength r................ Br
I-f bandwidth B.............. B/B Br
Video bandwidth b........... b/8 br
Sweep speed 5................ s/B st
Threshold signal power Psg,,. . . Ps,./8 Pg, or Pg, /B

scaled parameters as shown in Table 8-3. Also shown in this table is a
list of combinations of the scaled parameters that are {nvariant to the
scaling; these quantities are therefore much more suitable for ultimate
use. The quantities Br and br are dimensionless and usually have values
within one or two orders of magnitude of unity. The quantity sr is
simply the geometrical length of the signal as it appears on the A-scope,
and Pg,s is the threshold signal energy. It will be noticed that only four
variables now exist in place of five; this reduction has been effected by the
.scaling argument. We are therefore left with the following parameters:

1. Trace brightness, average noise deflection; sweep parameters.

2. Product of i-f bandwidth and pulse length Br.

3. Product of video bandwidth and pulse length br, product of sweep
speed and pulse length sr, focus.

4. Pulse repetition frequency, PRF; sweep repetition frequency SRF.

5. Signal presentation time 6, screen material.

6. Attention interval 6., number and spacing of possible signal
positions.

7. Video mixing.

Thesc parameters are discussed in the following sections, where both
experimental results and corresponding theoretical considerations are
presented together.
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8.5. Influence of Trace Brightness, Average Noise Deflection, Sweep
Direction.—Before proceeding with the discussion, it is necessary to
describe how the results are to be interpreted. When we speak of the
effect of a single variable, we should like to mean the effect upon signal
threshold power of changes in that variable when all other parameters are
fixed at their most suitable values. The difficulty is now apparent—just
how are we to know a priori the most suitable values of these parameters?

Trace Trace obscured Trace
barely by 60-watt light uncomfortably
visible 30 ¢m from screen bright

L 4 4

ol L
-10 7 -

(a) Same vertical and horizontal scales

30

Relative signal threshold in db

™ -
__.L.___%__
.
4
-8

—40(est) -30 -20 -10 0 10 20 30
Trace intensity in db

(b) Expanded vertical scale
F1a. 8-5.—Signal threshold »s. trace intensity.

System parameters: Key:
Br = 1.2 A P1 screen
st = L7 mm Q P7 screen
PRF = 3200 pps
6 = 3 sec

Fortunately this question is not vital, since it is found that the effect of
one variable is not strongly dependent upon the values of the other para-
meters. In some cases the “most suitable” value of a parameter will
not always be its value for maximum signal sensitivity; this situation
arises when the desired operating conditions prevent the use of the most
sensitive value of the parameter. Throughout the following discussion,
therefore, parameters will generally be fixed at values that have been
found through experience to be reasonably close to the most useful ones.

Dependence on Trace Brightness.—An experiment has been performed
in which the trace intensity was varied over a factor of 10%. Only a
slight change in threshold signal was observed over the entire range. The
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results are shown in Fig. 85, and the pertinent system parameters are
stated in the figure legend. Unfortunately no absolute measure of trace
intensity was available, but indicated on the abscissa are marks denoting
the observer’s reaction. It is obvious that the effect of trace intensity is
minor, although one remark of importance should be made. This
experiment was performed in a darkened room; it is expected that the
effect of background illumination will greatly disturb the low-intensity
part of the curve shown in Fig. 8-5. It appears, however, that as long
as the observer can see the trace clearly, the signal threshold dependence
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~10
=50 -40 -30 -20 =10 0
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Fi16. 8-6.—Signal threshold power vs. receiver gain. The average noise amplitude
is based on an estimate that this amplitude was 2 mm when the receiver gain was set at
0 db.

System parameters

Br =1.2 Screen = P1
s = 0.7 mm Viewing distance = 30 c¢m
PRF = 200 pps Vertical dimension
0 = 3.4 sec of focused spot = 0.5 mm

on trace brightness is nil. This applies to both the P1 (short persistence)
and P7 (long afterglow) screens. The ordinate scale shown in this
figure may seem confusing; it represents the signal threshold power
expressed in decibels relative to the noise power. Since the noise power
is a function of the i-f bandwidth, it is evaluated for a particular band-
width; ie., B = 1/7.

Dependence on Average Noise Deflection.—This dependence has been
established by specifically determining the signal threshold power as a
function of the relative receiver gain. The results are shown in Fig. 8-6,
where the ordinate again represents signal power in decibels relative to
the noise power in a band equal to 1/». The abscissa represents relative
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receiver gain in decibels above an arbitrary level. For a relative receiver
gain of 0 db, the estimated average noise deflection on the A-scope is 2
mm; since the second detector is linear, the average noise deflection for
other gain settings can be calculated; this is shown on the top abscissa
scale.

The pertinent system parameters for this experiment are indicated
in the figure legend. As long as the average noise deflection exceeds
about 0.5 mm, the signal threshold power is independent of the average
deflection. As the noise deflection becomes smaller, the signal threshold
power rises; for very small deflections the signal threshold power is
inversely proportional to the receiver gain. This is the result expected
if we assume that in this region a given video signal deflection is required,
independent of noise power. This assumption is certainly reasonable in
view of the negligible amplitude of noise.

Dependence on Direction of Sweep.—1t has been reported in various
places that the direction of the A-scope sweep influences the threshold
signal; one of these reports indicated a difference of as much as 4 db in
threshold signal. The experiment has been repeated by Sydoriak, Ashby,
and Lawson! using the six-position correlation method of evaluation.
The results show that the vertical sweep requires a signal substantially
the same as that for the horizontal sweep. The observers felt, however,
that the longer experience obtained in viewing the horizontal trace had
created greater psychological difficulty in viewing signals on the vertical
trace. Lack of adequate training on the vertical sweep can easily cause a
difference of several decibels in the threshold signal. We may now be
assured, however, that there is no fundamental difference in signal per-
ception on A-scopes that have different trace directions.

8-6. Dependence on the Product of I-f Bandwidth and Pulse Length.—
It is illuminating to look somewhat ahead and discuss qualitatively some
features that are to be expected as a result of limitation of i-f and video
bandwidths. The effect of i-f bandwidth limitation is somewhat different
from the effect of video bandwidth limitation; this fact may seem sur-
prising in view of the linear relationship between the modulation voltage
of the i-f carrier and the video voltage. As has often been remarked,
however, the linear detector records only the absolute value of the i-f
envelope function; hence, with receiver noise that contains no carrier,
cross-modulation terms develop. Video noise, then, even in a linear
detector, is caused by the interaction of i-f noise components. The
spectrum differs from the i-f noise spectrum. Hence the effect of reduc-
tion of video bandwidth differs from that of reduction of i-f bandwidth.
The highest important video frequency produced by the second detector
is numerically equal to the i-f bandwidth B, since this highest frequency

1 Unpublished.
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is the result of the interaction of the noise components at the two edges
of the i-f band. Therefore once the video bandwidth b is larger than B,
no effect of further widening the video bandwidth will be observable; this
is a desirable condition for an experiment in which the effect of the i-f
bandwidth is investigated.

We are not so fortunate in fixing other parameters at appropriate
values. Therefore in the results that are to be presented a family of
curves will be shown; each member of the family will represent different
fixed conditions of other parameters.

It has been remarked in Sec. 8:1 that the total noise power in the i-f
amplifier is proportional to B. This fact led to Eq. (3), which will now
be rewritten in a more suitable form. A new parameter has been chosen
for the signal threshold criterion because of its invariance to scaling,
namely, the input threshold signal pulse energy 7Pgs,. If we substitute
B for Af in Eq. (3), we may write

+Pay = LF BrFokT. @)
Px

Therefore, a measure of input signal threshold energy, which is inde-
pendent of B, is the ratio of signal power to the noise power, the latter
“being evaluated where Br = 1 (in other words, for a bandwidth equal to
1/7). Thisis the quantity which has already been plotted on the ordinate
scales of Figs. 8:5 and 8-6 and which will be used throughout the following
discussion of experimental results.

Ezperimental Results.—The results, from a series of experiments by
Sydoriak, Ashby, and Lawson, are shown in Fig. 8-7. The abscissa repre-
sents Br on a logarithmic scale, although the results were actually
obtained with a fixed pulse length r of 1.0 X 10-¢ sec, by varying B in
steps from approximately 10° to 107 cps. The ordinate represents the
signal threshold power Ps, expressed in decibels relative to the noise
power in a band equal to 1/7. Several experimental curves are shown on
the diagram ; they were obtained for different values of the PRF and the
signal presentation time 6. The bottom curve shown was obtained for a
PRF of 3200 pps and a signal presentation time 8 of 3 sec; the other two
curves in ascending order were taken for a PRF of 200 pps and 12.5 pps,
respectively, with @ fixed at 3 sec for both curves. The top curve is the
result obtained for only a single trace on the A-scope. Also shown on the
diagram is a line of 45° slope; this line represents the actual receiver i-f
noise power on the same ordinate scale. Other pertinent system param-
eters are stated in the figure legend.

The experimental points were obtained by the three observers
mentioned; the results for each observer are coded. Each point on the
diagram represents the average over several trials. The results of about
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10,000 individual observations are shown on this diagram. Tt is easy to
see that the total spread of experimental points for a given condition is
surprisingly small. Even more striking is the small difference between
observers not only in the shape of the final curve but in its absolute value.
This is good evidence that the six-position correlation method of evalu-
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Fi6. 8:7.—Signal threshold power »s. i-f bandwidth times pulse length.

System parameters Observers
Pulselength...... ........ ... ........ .. T =1 usec O R.A.
Pulse length on screen. .. ... ... ... ... .. st = 1.7 mm A JL.
Video bandwidth............. ... .......b =10 Mc/sec 0 s.s.
Signal presentation time....... .. ... ... 6 = 3 sec

Oscilloscope screen........... ., ......... Pt
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ating threshold signals used in these experiments removes the necessity of
nearly all psychological judgment on the part of the observer.

The general form of the curve seems to be relatively unaffected by the
different values of PRF and 6, but its absolute value is considerably
altered. The significance of this will be brought out later. For the
moment it is sufficient to note that the curve has a broad, flat minimum
in the neighborhood of Br = 1.2. For values of Br much larger than
this, the curve approaches asymptotically a line that is parallel to the
receiver-noise curve. On the other hand, for very small values of Br the
experimental curve appears to approach a line whose slope is — 1, showing
that in this region the signal threshold power is inversely proportional
to Br.
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Fi1c. 8-8.—Signal threshold power vs. i-f bandwidth times pulse length.
System parameters

Pulse repetition frequency.............. ... .......... PRF = 200 pps
Signal presentation time............ ... .. ... ... ... ..., 9 = 3 sec
Pulse length on sereen. .. ......... ... ... . ... .. ... . ... st = 0.05 mm

It seems wise at this time to interject one word of caution in the
interpretation of these results. The video bandwidth itself was made
sufficiently wide so as not to suppress video frequencies produced by the
second detector. The higher video frequencies, however, are not
necessarily perceived by the observer with the same ease as the lower
frequencies. This effect, which will be discussed at length in Sec. 87,
depends on the resolution of the eye and, far more important, on what
spatial separation of events as depicted on the A-scope face are most
easily seen. Because of the spatial selection of the human eye and brain
the observer may be considered as a type of frequency filter; the connection
between the frequency and the space function is made by means of the
A-scope sweep. In this regard the observer may unwittingly limit the
effective video bandwidth. This is indeed the case for the experiments
depicted in Fig. 8-7. For the moment, therefore, it will be assumed that
the results are valid only for the value of st shown;ie., st = 1.7mm. To
show how the curve looks for a widely different value of sr the signal
threshold power was measured as a function of Br when the pulse length
on the oscilloscope st was set at 0.05 mm. The result is shown in Fig.
8-8, where all parameters other than sr are the same as those for the curve
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of PRF = 200 pps in Fig. 87. It
can be seen that for a small value for
st the effect is to raise the curve in
absolute magnitude and to flatten it
somewhat. The curve does not ap-
pear to approach the 45° line as
rapidly for large values of Br; this
effect will be shown in Sec. 8-7 to be
analogous to the effect expected by
a restriction in video bandwidth,
which from the above reasoning
arises from the spatial discrimination
of the observer’s eye and brain.

These curves demonstrate that
the effects of i-f bandwidth B and
video bandwidth b become inextri-
cably entangled. It is really not
possible to speak of the effect of one
of these parameters without bringing
in the other. For this reason when
we come to the discussion of video
bandwidth and also of sweep speed,
we shall find it convenient to study
the effects of these quantities by
curves of the type shown in Figs.
8-7 and 8-8.

The series of photographs shown
in Fig. 8-9 has been prepared to give
an impression of just what the ob-
server sees when the i-f bandwidth
is varied. In each photograph A-
scope sweeps are shown with two sig-
nals appearing, one at position 1 and
the other at position 6. The only
difference between successive photo-
graphs is the value of Br. As can be

Fia. 8-9-—A-scope photographs illustrat-
ing the effect of i-f bandwidth. The signal
at position 1 is 5 db above noise power in a
receiver of bandwidth 1/r. The signal at
position 6 is 11 db above the same level.

System parameters
7 = 1 usec st = 1 mm
PRF = 200 pps f = 0.2 sec
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seen, the optimum value of Br is in the neighborhood of unity. The noise
changes greatly in character over the series of photographs. This is the
result expected because of the change in video noise spectrum. The
I-f noise has a much coarser and grainier appearance than h-f noise.
Theoretical Interpretation.—Use will be made of the deflection criterion
discussed in Sec. 7-3. For a square-law second detector there must first
be calculated the shift of the average value r%,, — 72 caused by the
presence of a signal and the variance %, — (+3)*for the noise alone. From
Eq. (7-14b) derived in Sec. 7-2 it follows that the signal threshold is
determined by
(o + 8%ty

where C is a constant.® The numerator, as a function of time, represents
the shape of the pulse after it has gone through the i-f amplifier. It is
easy to see that the maximum value (occurring, say, at time ¢ = #,) will
be of the form Sf(x), where S} is the
signal power before the i-f amplifier
and f(z) is a function of z = Br
which, for large z, becomes unity and
Maximum which, for small z, is proportional to
signal power z? (see Fig. 8-10). In fact, large z
means that B> 1/7; hence the pulse
is not deformed by the i-f channel,

L=BT — and the signal pulse power thus re-
F16. 810.—S8ignal and noise response v&. mains equal to 8}. For small z or

Br. B K 1/r, the incoming signal energy
(a S3r) will be reduced by the ratio B/(1/7) after passing through the i-f
section, and the pulse length will then become of the order of 1/B. There-
fore, if S:1 denotes the average signal amplitude after the i-f amplifier, we
have

B 1

7
or
S = 83(Br)? = Sz
The denominator in Eq. (5) represents the total fluctuating noise power;
it is proportional to W and, therefore, to B. According to the detect-
1 Cf. Eq. (7-14b); in addition we require that 7-'?v = 8W?, which follows from the

;
distribution function (er) e 2W for noise alone. The constant C still depends

on the number of observations (see Sec. 7-3) and is therefore not of the order of unity
but is usually much less than 1.
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ability criterion, the maximum signal power after the i-f narrowing must
be a certain fraction of the fluctuating noise power for the signal to be
detected. This condition leads therefore to a formula for the minimum
detectable signal energy! of the form

z

7@ (6)

where the constant has the dimension of energy and is proportional to
kT. The function z/f(z) is proportional to z for large z and is propor-
tional to 1/z for small z; hence it must have a minimum for some inter-
mediate value of z; this minimum value will turn out to be of the order of
unfty.

For a linear second detector and for weak signals, we obtain,? instead

of Eq. (5),
((12 + Bz)t=lu _ 4 - _
b80en — g 2270 = 10ssC. )

The signal threshold is therefore slightly higher than for a square-law
detector, but the difference is only about 0.2 db, which is hardly
observable.

The exact ferm of the function f(z) in Eq. (6) will depend, of course,
on the shape of the pulse and on the shape of the i-f pass band. Using
the notation of Sec. 7-2, we can easily derive® from Eq. (5)

S| [ arenzpesse|
20 [ 1Z()Pdf

1 The threshold signal power Ps, used earlier in this chapter, is the same as S;.
Since with the deflection criterion, the signal threshold is not defined in relation to a
betting curve, the percentage of the number of successes is not specified; it would
affect only the value of the constant in Eq. (6).

* Using Eq. (7-14a), we get for the shift of the average value of r caused by the

signal
- = w 1 W z
TSN — TN = \/% [F (— X 1; —z) - 1] ~ \’WT'QY
for small values of z = (a? + 82)/2W. For the variance of r for noise alone we obtain
W

;f;—(ﬁ)’=2W—'2—'

Equation (7) then follows from the deflection criterion [Egs. (7-31)1.

Sir = const.

=C. (8)

2 Since the shape of the pulse before the i-f amplifier is symmetrical around the
mid-point, 8¢(t) = 0 can be put in Eq. (7-1). In Eq. (8) there has also been intro-
duced

ao(t) = SoF(2).
The quantity S2/2 is therefore the initial pulse power in watts: G(f) is the Fourier
transform of the initial pulse shape F(t).
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This result will be written in terms of the minimum delectable average
signal power P! [instead of minimum detectable signal energy as in Ilq.
(6)]; since

N I e

2
P=3 | P

where 8 is again the pulse repetition period, it follows from Eq. (8) that
+ o + =

Coge [ AP [T dnzop

T 6 T axifty | ) ©)
[7 ez e

*
To make the dependence on the bandwidth B and pulse length 7 more
evident [in order to get the result in a form analogous to Eq. (6)] we write

ro=r()  20=2(}) (10)

The functions F.(z) and Z(u), respectively, characterize, therefore, the
shape of the pulse and of the i-f pass band. It is easy to show then that
Eq. (9) can be written in the form

= 2q2C T
Pmin—?O—Tl‘Ym’ (11)

P

where

+ o + =
7 =/ Z:(w)|2du, v = / Fi(z) de,

2

+ =
f(z) = z? / Gi(uz)Z:(w)e? =8 du |,
+ =
G:(}) = / dz F (z)e~2",
z = Br, 0= b,
T

Let us now consider a few examples.?
1. Gaussian pulse and Gaussian i-f pass band. Ther?

Fi(z) = e, Z(u) = e,

1 Usually the pulse shape is rectangular; hence Pun = S37/6s = Psr/6q; see also
footnote on p. 205.

2 All these examples are somewhat academic, since for all of them the system
function Z(f) cannot be strictly realized. For all of them the shape of the deformed
pulse will be symmetric around the maximum value, which occurs for ¢, = 0.

3 The numerical values of the constants a and a, depend on the way one defines
the pulse length and the i-f bandwidth. Defining them as the length and width at
the half-power points gives a = a; = 1.18.
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All integrals can be easily evaluated, and we get

2
2y (3
I—j__2¢7201rx+<1r>_
i T 60 2(1(11 xr

(12a)
The right-hand side is a minimum for z = aa./= = 0.44 (with
a = a; = 1.18), and the value of P, at this point is

5 _ 2s%C
Pl = 25

(12b)

2. Gaussian pulse and rectangular i-f pass band.! Then

for |u| < %,
for |u| > 3.

P 2020 2 ( ) , (130)
Erf2< )

where Erf(z) = 2/\/1;/ dte* is the error function. The
o

m@ =, w2
We obtain

right-hand side is a minimum for z = 1.95¢/7 = 0.72 (with
a = 1.18), and the value at the minimum is

(Pota) s = 1.1222°C. (13b)
0
3. Rectangular pulse and rectangular i-f pass band. We find
(LI)
2
5 20*Cw 2 (14a)

Pmin - 60 EW*:
Y\2

where Si(z) = / dt (sin t/t). The right-hand side has a minimum
0

for z = 1.37, and
20 *”C.

(Pain)mia = 1.10 (14b)
Graphs of 8,Puin/2¢2C as a function of z = Brand as given by Eqgs.
(12q), (13a), and (14a) are shown in Fig. 8-11.

In the experiments described in the beginning of this section, the
1 The same result is obtained for the case of a rectangular pulse and a Gaussian
i-f pass band.
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pulse shape was practically rectangular. A double-tuned transitionally
coupled i-f amplifier was used, which has the system function

! .
RORC)

hence the shape of the i-f pass band is

2 =

1

)

Figure 8-12 shows, for different values of the bandwidth B, the shapes of
an initially rectangular pulse after it has gone through the i-f amplifier,

20 /

1Z(NHI* =

—
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—
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Signal threshold power in db
S

4

2

0
001 002 00400601 02 0406 1 2 4 6 10 20 40

1'1G. 8-11.—S8ignal threshold power ()P...in/zrzCB:;. Bz for different shapes of pulses and of
i~f pass band.
From these curves the maximum value of the deformed pulse can be
determined for different values of B; and by the application of the
deflection criterion [Eq. (5)], the signal threshold as a function of Br can
be found.! The result is shown by the dotted curve in Fig. 811, from
which it is seen that it differs very slightly from the case of a rectangular
pulse and Gaussian i-f pass band. Since the calculations for a Gaussian
i-f pass band are much simpler, from now on the double-tuned transi-

1 In the calculations the overshoot shown in two of the curves of Fig. 8-12 was not
taken into account; for these bandwidths the pulse was taken to be undeformed.

—
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tionally coupled amplifier will always be approximated by a Gaussian
amplifier with the corresponding bandwidth.

Figure 813 shows the comparison with experiment. The constant ¢
was so chosen that the theoretical curve was an approximate fit to the
experimental points for small 2. The agreement is not very good;
theoretically, the minimum occurs at about £ = 0.7 instead of at z =~ 1.2,
as indicated by the experiments. The curve is, however, fairly flat
around the minimum; hence this discrepancy is probably not significant.
More serious is the disagreement for large values of z. For large z the

T

<0 57 “% *%/ ’l\ |
. EAINNER N
A/ TN N

tin usec
¥ia. 8-12.—Shape of square pulse after passing through a double-tuned, transitionally
coupled i-f amplifier with different values of the bandwidth.

theoretical curve is much steeper than the experimental data would
indicate. This discrepancy is probably caused by the influence of the
sweep speed. As will be explained in the next section, for a given sweep
speed the finite resolving power of the eye is equivalent to a certain
video bandwidth. If this ““video bandwidth of the eye’’ is smaller than
B and Br > 1, then the detectability of the signal will be improved or
the signal threshold will be lowered. From the influence of the sweep
speed on the signal threshold the apparent video bandwidth of the eye
can be estimated, and the sweep-speed correction can then be calculated.
The result is shown in Fig. 8-13; evidently the correction removes to a
great extent the disagreement between theory and experiment.

This section is concluded with a remarkable theorem discovered by
Wiener, Hansen, North, and Van Vleck independently. The theorem
states that the best signal-to-noise ratio (or the lowest signal threshold) is
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obtained if the shape of the i-f pass band is the Fourier transform of the
pulse shape. Van Vleck then says that ‘“the i-f is matched to the pulse
shape.” When “matched’’ the value of the signal-to-noise ratio is then
independent of the pulse shape.! This theorem is illustrated by the
results obtained in Examples 1 and 2. At the minimum point for x the
Gaussian pulse and Gaussian i-f pass band matched, since the Fourier

E +10
-
2> +8 / 1
T e //
£ - Y
g3 +6 $
&8 &/ VI3
s £ +4 Ny /
b Ry .
[ \ Q\Q/ / 3/
§3 ., 1 LI SA / y >
% E ‘ / 17
£ w 0 \ ¢ -
$c -
£ -
l; % =2 // =
5 c
& -4

0.04 0.06 0.1 0.2 04 06 1 2 4 6 10 20
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F1c. 8-13.—8ignal threshold power vs. Br for square pulses and Gaussian i-f pass band,
comparison with experiment. Curve 1, infinite video bandwidth before correcting for
sweep speed (b = =), Curve 2, infinite video bandwidth after correcting for sweep speed
(b = 2.2 Mc/sec). Curve 3, corrected for finite video bandwidth and sweep speed (b = 0.5
Me/sec).
The circles are experimental values obtained with & = 10 M¢/sec, and the square, for
b = 0.5 Mc/sec. The vertical lines through the points show the experimental uncertainty.
Pulse repetition frequency. ... ...................... PRF = 200 pps
Pulse length......... ... .. .. .. ... .. . ... .. = 1 usec
Signal presentation time............................ sec

-
=3
Sweep speed. . . ... e § = 2 mm/usec
K = 0.0535

transform of a Gaussian function is Gaussian. At this point, therefore,
P, must have the smallest possible value. This is confirmed by Eq.
(13b); for a rectangular i-f pass band (which is “mismatched’’) we obtain
at the minimum a value that is 12 per cent larger than for the Gaussian
case. However, from these examples it can also be seen that the differ-
ences are rather small; hence it will usually not be of practical importance
to try to match the i-f pass band to the pulse shape.

1If it is remembered (Parzeval theorem) that
+w + =
[T prgy at = f G(f) df,
J—® —
and if e?7i/t is absorbed in Z(f), since this affects only the phase spectrum, then the
proof of the theorem follows from Eq. (9) by the application of the so-called ‘‘Schwartz

inequality.” The integrals are equal if Z(f) is the Fourier transform of F(t), and this
is true for any F(t). The absolute minimum of Pmin is therefore 2¢2C /6.
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8:-7. Effects of Video Bandwidth; Sweep Speed, Focus.—As was
mentioned in the last section there is a connection between the A-scope
sweep speed s and the video bandwidth b. This connection is explained
by the failure of the observer to see easily, on the A-scope, events that are
spatially too close. This statement is equivalent to saying that he fails
to see easily the high video frequencies, and therefore he constitutes a
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Frae. 8-14.—8ignal threshold power vs. i-f bandwidth times pulse length for a fast sweep

speed.
System parameters
Pulse repetition frequency..... ... ... .. ... ..... . ...... PRF = 200 pps
Signal presentation time....... ... ... ... ... ... ....... .. 8 = 3 sec
Pulse length onsereen............. ... .. ... ... ... . .... 37 = 1.6 mm
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Fra. 8:15.-—Signal threshold power vs. i-f bandwidth times pulse length for a slow sweep

speed.
System parameters
Pulse repetition frequency. . .......................... PRF = 200 pps
Signal presentation time...... ... .. ... ... .. ... ... ..... # = 3 sec
Pulse length onscreen.............. ... ... .......... st = 0.05 mm

kind of low-pass video filter. By the same sort of argument there is a
connection between focus and effective video bandwidth.

Ezxperimental Results.—The video bandwidth b has less effect upon
signal threshold power than does the i-f bandwidth. The effect can be
most clearly appreciated by referring to Figs. 814 and 8-15. In Fig.
8-14 is shown a family of three curves, each curve representing an experi-
mental Br curve for different values of br. The top curve shows the
result when br is set equal to 0.1; the lower curve, which is actually two
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coincident curves, is the result when b7 is set equal to 0.5 and 10.0. For
all these results the pulse length on the scope s is 1.6 mm, the PRF is 200
pps, and the signal presentation time 6 is 3 sec. These are essentially
the same conditions applying to one of the curves in Fig. 8-7. It can be
seen that for values of br greater than 0.5, no effect can be ascribed to
this parameter. The curve for br = 0.2 is displaced to a higher absolute
value and has a flatter minimum. This effect is characteristic for
restriction of the video bandwidth; it will be calculated quantitatively
later on.
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F1a. 8:16.—Signal threshold power vs. video bandwidth times pulse length for a fast sweep
Syster:p;:i;meters
st = 1.7 mm PRF = 200 pps
= 3.5 sec Oscilloscope screen = P7

Figure 8-15 shows similar results except that st has been fixed at 0.05
mm for all curves. The upper curve in this case corresponds to a value
of br equal to 0.01; the lower curve, again really two coincident curves,
applies for br equal to 0.1 and 10.0. 1In this case the effect of video band-
width disappears when br exceeds 0.1. This result may be anticipated
and explained qualitatively. When sr is small, the observer, because of
lack of spatial discrimination on the A-scope face, acts like a video filter
whose bandwidth is small. Thus, no effect will be observed by varying
the video bandwidth in the receiver as long as the latter bandwidth
exceeds the ‘“observer” bandwidth. On the other hand, if sr is increased
to larger values, the “observer’” bandwidth will increase a like amount;
therefore, the effect of receiver bandwidth will be noticeable for larger
values of br.

These results can be presented in a different form. Figure 816
shows the results of Fig. 814 plotted in a form in which the abscissa
represents br; each curve is taken for a fixed value of Br. Similarly,
Fig. 8-17 shows the same treatment of the results of Fig. 8-15.

The appropriate parameter connected with the sweep speed s is, of
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course, the pulse length on the A-scope, sr. The effect of this parameter
has been implied in previous discussion. From the sets of curves shown
in Figs. 8'7 to 8-13, we can observe the effect of a reduction in sr from
1.6 to 0.05 mm. This, however, does not give information concerning
other values of sr. Accordingly, a threshold-signal experiment was per-
formed in which sr was varied from less than 0.01 to 10 mm, with the
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Fia. 8-18.—Signal threshold power »s. pulse length on screen,
A-scope system parameters

Br = 1.2
PRF = 200 pps
br =10

results shown in Fig. 8-18. Two curves are given, the upper one cor-
responding to the extremely short signal presentation time of 0.043 sec,
the lower curve showing the results where the signal presentation time
was equal to 3 sec. All other parameters were fixed in the two cases;
their values are stated in the legend. ‘
It can be seen that the curves exhibit flat minima in the neighborhood
of s = 1 mm. Tor both larger and smaller values of sr an increase in
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threshold signal power is observed. For small values of sr the threshold
signal power is proportional to (s7)7*%. The curve shows very clearly that
the observer’s eye and brain mechanism responds best to the signal when
the latter is made approximately 1 mm in length. At a viewing distance
of 30 cm this corresponds to a subtended angle of about 0.2°.  For small
values of s7 the eye and brain still preferentially select events having a
spatial separation of about 1 mm, which corresponds to attenuating the
higher frequencies relative to the lower frequencies. The effective br of
the eye and brain is therefore of the order of magnitude of sr.

We are now in a position to reexamine the curves of Figs. 8-16 and
8-17. Since the effective bandwidth of the observer’s eye and brain is of
the order of sr, we should expect in these figures that b will have little
effect as long as it exceeds the value of sr. This is precisely what is
observed; the effect of br is only noticeable where it is smaller than sr.

Both of the curves shown in Fig. 818 are of similar shape. This
result might be expected at first sight, but closer reasoning shows that it
is actually somewhat surprising. The top curve was obtained with only
about eight signal pulses and therefore requires a signal power several
times as large as the noise. The theory presented below concerning the
dependence of signal threshold power on s holds strictly only if the signal
power is small with respect to noise power. Nevertheless the top curve
exhibits the same behavior as the bottom curve; the only difference that
can be noticed, apart from the absolute value, is the slightly flatter
minimum.

Now that the effects of video bandwidth and sweep speed or, more
properly, br and s+ have been discussed, the effect of focus on the A-scope
visibility may be anticipated. Poor focus is not necessarily of a simple
variety; there may be, and usually is, astigmatism in the focus of the
electron beam, which will produce a sharp line focus instead of a spot.
As the focusing adjustment is changed, the line shortens and broadens
until it becomes nearly a round disk; this procedure continues until
another sharp-line segment is formed at right angles to the first one. It
is thus possible to defocus in one direction without, at the same time,
defocusing in an orthogonal direction. The degree of astigmatism can
be made adjustable so that an experiment can be performed in which
the effects of defocusing in a direction parallel to the A-scope sweep and
in a direction perpendicular to the sweep can be separately studied.

We should expect these effects to be different. Since defocusing in a
direction perpendicular to the sweep is equivalent to smearing out signal
and noise deflections, we should expect no pronounced effect until the
spot size becomes comparable to the average noise deflection. Defocus-
ing in a direction parallel to the sweep, however, is equivalent to over-
lapping events that occur within the spot diameter. This is analogous




Skc. 87) EFFECTS OF VIDEO BANDWIDTH 215

to the effect of spatial discrimination by the observer, and we should
expect the results to be similar in the two cases. Furthermore, because
the observer does not appear to be sensitive to events that occur within a
spatial distance of much less than 1 mm, we should expect the effect of
defocusing to be very small as long as the spot size in a direction parallel
to the sweep is smaller than 1 mm. For spot sizes larger than about 1
mm, the effect should be similar to that of a reduced value of s7 or br;i.e.,
the signal threshold power should be approximately proportional to the
square root of the spot size.  This conclusion assumes that the restriction
of effective video bandwidth is caused primarily by the spot size and not
by the receiver video bandwidth b itself.

i
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Fis. 8:19.---Signal threshold power vs. focusing condition. The width of the pulse on the
sereen st = 0.05 mm is indicated by the arrow at point A.
Systein paraineters Key
Br 1.2 PRF = 200 pps (O Defocusing parallel to sweep
8r = 0.05 mm 8 = 3 sec A Defocusing perpendicular to sweep

These conclusions are substantiated by experiment. In Fig. 8:19
two curves are shown, the upper one corresponding to defocusing in a
direction parallel to the sweep and the lower one corresponding to a
defocusing in a direction perpendicular to the sweep. The abscissa
represents the extent of defocusing, i.e., the length of the small-line
segment which is formed on the screen by the electron beam. The
ordinate represents the signal threshold power expressed in decibels
relative to the value of signal threshold power under focused conditions.
Under the best condition of focus obtainable, the spot diameter was
measured to be ahout 0.1 mm. The maximum defocusing available gave
a spot length of approximately 3 mm. For this experiment the value of
st was made very small, i.e., 0.05 mm, so that the receiver video band-
width b would not limit the effect sought.

It is obvious from Fig. 8-19 that defocusing in a direction perpendicu-
lar to the sweep has practically no effect on threshold signals. The
maximum defocusing available produces a spot length comparable to the
average noise deflection; by the argument that has just been given no
pronounced effect is expected. Defocusing in a direction parallel to the
sweep, however, causes a rise in signal threshold power; this rise sets in
where the spot length is of the order of magnitude of 1 mm and continues
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to rise with increasing defocusing. This situation is analogous to the
effect of st shown in Fig. 8-18. In that case the dependence of signal
threshold power on the reciprocal of the square root of st was reached
only for values of sr that were very much smaller than 1 mm.

Theoretical Interpretation.—If the video bandwidth is small compared
with the i-f bandwidth, then instead of Eq. (6) there will be obtained for
the minimum detectable signal energy an equation of the form

N(zy)
H(z,y)

where £ = Br and y = br. The function N(z,y) is the fluctuating noise
power, and S}H (z,y) is the maximum value of the pulse after it has been
deformed by the.i-f and video amplifiers. The qualitative behavior of
these functions can easily be discussed. The function N is the square
root of the area of the continuous noise spectrum! of 2. In Sec. 2-8 we
saw that for a square-law detector, the ordinate of the continuous spec-
trum at the origin is proportional to B. Therefore if the video bandwidth
is much smaller than the i-f bandwidth (b << B), then the area will be
proportional to bB whereas, if b > B, the area will be proportional to B2
Therefore the function N(z,y) will have the asymptotic behavior

Sir = const. ’ (15)

Vzy fory Kz,
N(@y) o z fory > z. . (16)

The function H(z,y) has the same asymptotic behavior as the function
J(z) in Eq. (6) for any fixed value of y and reduces, of course, exactly to
the function f(x) if y > z. Therefore, for fixed y, Hax? for z << 1 and
H = constant (independent of z) for £ >> 1. On the other hand, it is
easily seen that for fixed z, Hay for y K 1. Consequently, for fixed
9, Puia (or S3r) will be proportional to 1/x for £ << 1 and proportional to
'z for 2> 1; hence a minimum value will always exist. The region
where Puwua /z occurs when z 3> y. Of course, when y itself is large,
P will be proportional to z in the region 1 << z < y, since in this case
the video bandwidth will have practically no influence and the results of
the previous section will hold.

The dependence of Pni on y for fixed z is more complicated. If

z « 1, from the asymptotic behavior of N and H we find that Puaal /A/y
for y <z and P.. = constant (independent of y) for y>> z. The
quantity P will therefore be a monotonically decreasing function of y;

1By definition, N? = ry — (+%)?. According to the deflection criterion [Eq.
(7-1a)] with f = 7 (square-law detector). For noise alone the spectrum consists of
the d-c¢ term and the continuous part. From the general formula of Sec. 3-3 it follows
that the area of the continuous spectrum is just the variance of 7.
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or in other words, if £ = Br < 1, then the narrowing of the video will
always increase the signal threshold. This is no longer the case if x> 1.
Since Puaal//y for y < 1 and Puna V/y for 1 < y < z, there will be a
minimum for an intermediate value of y. Therefore, if Br>> 1, then
the narrowing of the video will at first give an improvement, continuing
until P, reaches a minimum value. Further narrowing of the video will
then again ¢ncrease the signal threshold. If z decreases, then the mini-
mum of Poi, as a function of y becomes less pronounced, and it disappears
for x = 1.

For a square-law detector it is not difficult to find an exact expression
for the minimum detectable average signal power Pnwn. We find that

Pu
o[ [T aP@][ [ ar1zeinlr [77 a2z R ]

S [T df Zapreme [T AR GUOGHT = HZENZHF — D
an
The notation is the same as in Sec. 8-6; Z.a(f) is the system function of the
video amplifier; ¢, is the time at which the deformed pulse is a maximum:
Zyva(f) = Z¥,(—f), from which it can easily be shown that the denomina-
tor of Eq. (17) isreal. To put Eq. (17) in the same form as Eq. (15) we
must introduce, as in Sec. 86, the shape functions?

ro=r() 20 =2(8)  zut) = 7uw(})

Then we can write

s _ 20%C  N(z,y)
P =26, Hizg)

4+ = + = y 12

Niz,y) = zy -/1 dv |Z ., via(v)]? /‘ . du|Z1(uw)|AZ, <u -3 v)‘ s

+ = + a0
H(zy) = xy / dv 71, via(v)e*mviten / du G1(ux)G (ux — vy)
Zy(w) 2t (u - %v)

4o +w ,
vy = / dz Fi(z); Gi(z) = / du Fi(u)e vz,

— — »

(18)

As the first example let us consider the case where the pulse shape and

1 The video bandwidth b will always be defined as the width between zero frequency
and the upper half-power point.
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the shapes of the i-f and video pass band are all Gaussian. Then

a?

Fi(z) = e @2, Zy(u) = e, Zi i) = e %, (19¢)

with @ = 1.18. All the integrations can be carried out, and we obtain

New =21+ 2)
ne = GE) ([ G+ G s} (om0
T 1
i \féa'

We can easily verify the qualitative behavior of P.w as a function of z
and y, discussed in the beginning of this section. For fixed ¥, Puan, as a
function of z, always has a minimum. For y — o« we again obtain the
result of the previous section [Eq. (12a)]. Of special interest is the

dependence of P on y for fixed x. Putting Pawa/8y = 0, we see that

at the minimum,
20 Y m 222 v
’rz = <____) : (20)

a rx? — at

This shows that for 7z/a® > 1, Pui, as a function of y, has a minimum,
which, as a function of z, is given by Eq. (20). For »z/a? < 1, Eq. (20)
requires an imaginary value for y., which means that the minimum has
disappeared. If mx/a® = 1, one is just at the minimum point of the
function f(z) [see Eq. (12a)], and the i-f pass band is just the Fourier
transform of the pulse. This is in accordance with the general theorem
of Van Vleck and DMiddleton,! which states that if the i-f pass band
is matched to the pulse shape, then any kind of video filter will increase
the signal threshold.

The proof of this theorem follows from Eq. (17). At the “match
point” G(f) = Z*(f). Putting

+ =
Vi) = /_ AR 12z = )l (@1)
X(f) = Zua(f)eV (),
we see that
+ = o
P M (22)

= .
A xmve
To find what video system function Z.a(f) will give the lowest signal

1J. H. Van Vleck and D. Middlcton, J. Applied Phys., 11, 940 (1946).
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threshold, we may multiply Eq. (22) by

[ avo])

and, from the Schwartz inequality, we then find that the best choice for
X(f) is X(f) = V(f), which means, according to Eq. (21), that except for
a nonessential phase factor the optimum solution is Zwe = 1, or no video

filter at all.
For the comparison of theory with experiment there will be discussed

as a second example the case of a square pulse and Gaussian i-f and video
pass bands. Then

=1 1.
Fl(Z) [=O: !Z{ : Z:: Zl(u) == e—a’uz; Zl,vid(v) = e—%alvﬂ; (23@)

and again ¢ = 1.18. We obtain
_20C (2 A% 1

Fon = 60 @t ¥ 40" Foa) #30)
where
1 -z a + Bz a — Bz
Flzy) = ﬁ dee e [E‘"f [2 Vala = Tﬁ)] Bt [2 Vala 2"—‘3‘2‘)”’
atf1 1 2
a = 7?2 (—.’13—2 + 4—yz>) B = ﬁzyz, (236)

TABLE 84 —VALUES OF (8/02C)Pmin FOR DIFFERENT VALUES OF Z AND ¥ [cF. Eqgs
(23b) AND (23¢)]
The numbers in parentheses are 10 X the logarithms to the base 10 of the numbers
immediately above, i.e., a “decibel”’ value.

\ 0.1 0.5 1.0 5.0 10 w
0.2 6.38 5.01 4.95 4.95 4.95 4.95
8.04) | (7.000 | 6.94) | (699 | (6.99 | (6.99

1 3.88 2.34 2.33 2.39 2.39 2.39
5.89) | (3.69) | 3.68 | .79 | 3.79 | (3.79)

2 4.52 2.84 3.27 4.15 4.22 4.23
6.55) | 4.53) | (5.14) | (6.18) | (6.26) | (6.27)

5 6.45 4.32 5.53 9.60 | 10.3 10.5
8.10) | (6.36) | (7.43) | (9.82) | (10.13) | (10.2)

1 9.34 6.40 8.39 17.2 20.9 23.3
©.70) | (8.06) | (9.24) | (12.36) | (13.20) | (13.67)

15 10.7 7.39 9.55 22 8 26.3 31.8
(10.3) | (8.69) | (9.80) | (13.58) | (14.2) | (15.02)
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and Erf(z) is the error function. In Table 84 is tabulated (8/¢2C)Pui,
for different values of z and y, and in Fig. 820 the same quantity is
shown as a function of y for different values of xz. We see that the
qualitative behavior is again as expected.
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Fia. 8-20.—Signal threshold power 6Py a:ICTl;:. br for square pulse, Gaussian i-f, and
Gaussian video pass band; the different curves are for different values of Br.

These results have been compared with experiment in different ways.
In the first place they have been used to explain the dependence of the
signal threshold on the sweep speed s. As mentioned before, the assump-
tion that the human eye averages over a certain length [ on the A-scope
is equivalent to ascribing to the eye the characteristics of a low-pass video
filter of width b =~ (s/l). The experimental result that for small values
of sthe signal threshold increases approximately as s—* is then an immedi-
ate consequence! of the very general Eq. (15). Assuming that this
“‘video filter of the eye’’ has a Gaussian shape,? we can use Eq. (23a) for a
quantitative eomparison with experiment, since the i-f pass band is also
nearly Gaussian in shape. First we must determine the constant C.
This value has been determined from the experimental results giving the
signal threshold as a function of £ = Br for small values of z (see Fig.
8:8). Since in these experiments b was much larger than B, and also

1Fory Kz, N « \/zy, H « y; thus Prin « ¢ o s,

2 This means that the ‘‘attention funetion” of the cye is also Gaussian, and we
may define its width ! as the s/I. Usually s is expressed in millimeters per micro-
second, so that if we express b in megaceyeles per second, 7 comes out, in millimeters.
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since the video bandwidth of the eye can be expected to be larger than B,
we can put ¥ = « in Eq. (23a) and, of course, obtain Eq. (13a¢). The
experimental data are always expressed as the minimum detectable
signal pulse power in decibels above the noise power for an i-f bandwidth,
By = 1.0.Me/sec. Since for a Gaussian i-f pass band the noise power is

; \ﬁzr o’B,

and since the pulse power is 3.5, it is clear that the experimental quantity

plotted is
Po,a [21

From Eq. (13a) and Fig. 8-8, we find that for a 1-usec pulse, an observa-
tion time of 3 sec, and a PRF of 200 pps and for B < 1 Mc/sec, the best
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Fie. 821.—S8ignal threshold power vs. sweep rate; comparison with experiment.

fit is obtained if ¢ = 0.535. Using this value we can try to fit the experi-
mental results of the signal threshold as a function of the sweep speed s by
choosing a suitable value of ! and putting ¥y = s/l in Eq. (9a). The
result is shown in Fig. 8-21; 1 is found in this way to be 0.9 mm.
Referring to Fig. 8:13, we can now correct the experimental results for
large values of 2. Since the sweep speed used was 2 mm/usec, the video
bandwidth of the eye was 2.2 Mc/sec, and y is therefore comparable with,
or smaller than, z and should have an appreciable effect on the signal
threshold. For the theoretical curve, Eq. (23a) was again used (with
C = 0.535, y = 2.2), and we see that there is satisfactory agreement
between theory and experiment. In the same figure an experimental
point determined for an actual! video bandwidth of 0.5 Mec/sec is recorded.
To compare this result with theory we must take into account the com-

1In the actual experiment the PRF was 3200 pps. According to the square-root
law (see Sec. 8:8), 6.02 db [ = 10 logio (233%2)**] was added to the experimental result,
and this value is shown in Fig. 8-13.
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bined effect of the real video bandwidth b, and the video bandwidth of
the eye b,. It can easily be shown that, if all shapes are Gaussian, the
combined video bandwidth b is given by

1 1 1

P B + W (25)

We must therefore put y = 0.487 in Eq. (23a), and there is then again
agreement with experiment.

Finally, in Fig. 822 a comparison with theory of the experimental
results of the signal threshold as a function of the video bandwidth for
different values of the i-f bandwidth B is made. The correction for the
video bandwidth of the eye has been made according to Eq. (25), with
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Fia. 8-22.—Signal threshold power vs. br with sweep-rate correction; comparison with
experiment.

! = 0.9 mm. The constant C was chosen somewhat larger (0.556). The

agreement with experiment is not very good and, especially for B = 11

Me/sec, b, = 0.1 Mc/sec, there is the rather large discrepancy of about

3 db. However more observations are clearly needed before we can be
entirely sure that the discrepancy is real.

8-8. The Dependence upon Repetition Frequency. Ezxperimental
Dependence on PRF.—Experimental results have already been presented
in the previous section that demonstrate the effect of the PRF on the
threshold signal. These results are shown in Fig. 8.7; however, it is
convenient to plot the data in a somewhat different form. In Fig. 8-23
is shown the threshold signal power as a function of PRF; the power is
measured in decibels relative to noise power contained within an i-f band
equal in width to 1/7. The three curves represent different conditions of
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i-f bandwidth; other fixed parameters are stated in the legend. It can be
scen that the threshold power is very nearly inversely proportional to the
square root of the PRF. However, it will be noticed that a slight flatten-
ing of the lowest curve begins to take place at very large values of PRF.
This is the first intimation we have had of the limitation of threshold
signal by a phenomenon different from noise fluctuation, namely, contrast.
When signals are much smaller than noise, the contrast between the
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Fic. 8:23.—8ignal threshold power vs. PRF.
System parameters

Pulse length onsereen. ... ......... ... .. ............ .. 8t = 1.7 mm
Video bandwidth. ....... ... ... .. ... . ... .. .. .. .. .. b = 10 Me/sec
Signal presentation time........ ... ... ... ... ... . ... 8 = 3 sec
Screen material........... ... ... .. ... .............. P1

average signal plus noise deflection and the average noise deflection
begins to approach the value of contrast in light intensity that can just be
discerned by the human eye. This figure has often been quoted as 4 per
cent, but recent measurements show the 4 per cent figure applies for
nearly ideal conditions only. At any rate, when the average noise
fluctuation is reduced below this critical value, the signal must be recog-
nized by contrast changes rather than by deflections exceeding noise
fluctuations; hence the threshold signal is expected to be independent of
PRF. This statement is not strictly true, however, for it assumes that
the observer makes use of light intensity which is proportional to the
average video deflection. This is clearly not the case; the entire video
amplitude distribution is visible to the observer, and he makes use of that
part of it best suited to his needs. For a given small average signal
deflection the contrast produced on the A-scope is a function of the part
of the noise distribution under scrutiny. A contrast as large as desired
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Fic. 8-24.—A-scope photographs illustrating the effect of the
Position 1: Signal = noise + 10 db
Position 2: Signal = noise + 5 db
Position 3; Signal = noise
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N=12800

number of traces, N. Bignals occur on white dotted positions only.
Position 4: Signal = noise —~ 5 db
Position 5: Signal = noise ~ 10 db
Position 6: Signal = noise — 15 db
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can be obtained by looking high enough in the distribution. The
essential price that is paid in this procedure is the small fraction of time
that the video voltage is observed high in the distribution. However, if
we are willing to wait long enough and have as many signal sweeps as are
desired, enough observations could be made in the high part of the dis-
tribution so that a proper statistical reading could be made. In this
way, even with limited contrast discernibility, the observer should be
able to see as small a signal as he pleases if enough signal sweeps are pre-
sented to him. However, the dependence of signal threshold power on
total signal sweeps will not follow the same law; it can be shown that
when limited by contrast the signal threshold power changes only slightly
with tremendous changes in the number of signal sweeps. We should
expect the transition between the two regions of different behavior to
occur for a signal whose video deflection is a few per cent of the average
noise deflection, i.e., one whose i-f power is a few per cent of the i-f noise
power. This expectation is substantiated by experiment; when the
relative signal-to-noise power in the i-f amplifier approaches —10 or —15
db, the contrast limitation becomes easily apparent.

In order to demonstrate this effect and to give the reader a clear
picture of the various processes involved, a series of photographs were
taken of the A-scope. These photographs (Fig. 8-24) differ from each
other only in the number of sweeps that are recorded. In each photo-
graph six signal positions are indicated along the base line by small white
dots, but for this series of photographs the signal does not occur randomly
on one of the six signal positions. Signals on the first position always
have a power 10 db relative to noise power in an i-f band of width equal
to 1/r. Similarly signals appearing on positions 2 to 6 have powers of
+5,0, —5, —10, and —15 db relative to the same noise power. In each
photograph two signals occur on adjacent positions, so chosen that
generally one signal is easily visible while the other one is not. As the
weaker signal becomes more visible, through a change in the total number
of sweeps, the stronger signal is reduced in intensity to the appropriate
value and moved to the appropriate signal position. The various system
parameters that apply to these photographs are stated in the figure
legend.

The first photograph shows a single A-scope trace, i.e., Ngs = 1 with
signals occurring in positions 1 and 2. The stronger first signal is visible
with some difficulty, while the second signal is probably below the
threshold value. As the number of sweeps is increased in the succeeding
photographs, smaller and smaller signals become discernible; a reduction
of threshold signal power of about 5 db is possible for every increase in
N by afactor of 10. This procedure continues until the signal reaches a
power of —10 db relative to noise.
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The signal is visible in the first photograph (N¥Ns = 1) because of its
large deflection compared with chance noise fluctuations. In succeeding
photographs the average deflection of all of the sweeps is used to indicate
the signal. It is easy to see the smoothing effect of a large number of
observations; indeed the pictures for Ng > 104 show almost no “‘grain,”
or roughness, caused by noise. It is als6 easy to see by the density of
traces the probability distributions of video amplitudes due to noise.

The reader has no doubt wondered why the abscissa in Fig. 8-23
represented the PRYF itself rather than the total number of signal sweeps
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N; given by the product PRF and signal presentation time #. Since we
should expect the signal threshold power to be dependent only on Ns
(which in this experiment is equal to Ny the total number of sweeps),
it would seem better to use N directly as the abscissa. Unfortunately,
it is not so simple as this; for in the experiment whose results are shown
in Fig. 823, we cannot yet be assured that the human observer can
properly remember and integrate the sweeps over the complete signal
presentation time @ of 3 sec. This problem has been studied, and the
results are presented in the next section.

Ezperimental Dependence on SRF.—In the experimental results just
presented it has been assumed that each A-scope trace contains noise and
the desired signal pulse. It is useful to remove this restriction and to
examine the separate effects of the A-scope sweeps containing noise and
the sweeps containing the signal. In what is to follow we shall assume
all sweeps to contain noise; the number of such sweeps will be denoted by
Ny; and the sweep repetition frequency by SRF. Likewise the number
of sweeps containing the pulsed signal will be denoted by Ns and the
pulse repetition frequency by PRF, as before.
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In Fig. 8:25 is shown the experimental signal threshold power as a
function of SRF keeping the PRF constant at 200 per second. It can be
seen that the signal threshold power is directly proportional to the square
root of SRF and, of course, also to the square root of Ny. In a similar
type of experiment in which the SRF is held constant (at 3200 per
second), the signal threshold power is found to be inversely proportional
to the first power of the PRF.  This result is shown graphically in Fig.
8-26; the inverse linear relationship holds for several conditions as long
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as the signal threshold power is not much larger than noise power.
Three experimental curves are shown differing essentially in the presenta-
tion time and screen material used. The significance of these parameters
will be brought out in the next section. In addition to the experimental
curves there is shown a theoretical curve for the ideal observer derived
by the methods described in Sec. 7-5. It can be seen that the functional
dependence of the experimental curves is the same as that of the ideal
observer, but the absolute signal threshold power is higher. This is not
surprising; the human observer is not expected to be so efficient as the
ideal observer.
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Theoretical Interpretation.—Since the dependence of the signal thresh-
old on the total number of observations has already been discussed in
Chap. 7, and since we shall not attempt to deseribe quantitatively the
effect of contrast, we shall try only to interpret the regularities found with
regard to the dependence of the signal threshold on the SRF.

Let Ny be the total number of sweeps, and let N of these contain the
signal while the others contain only noise. As in Sec. 7-3, we assume
that the observer determines the average value of some function f(r) of
the deflection on the scope at the signal spot and at a spot where there is
only noise. Or in other words the observer makes N observations of the
deflection at the signal spot and compares the average value

Ns Ny—Ns
1
Ysin = e [sz+N(rk) + Zfzv(f‘k)] (26a)
N
k=1 k=1
with the average value
Ny
= 32 ) Il (26)
k=1

obtained from Ny observations of the deflection at a spot where there is
only noise. As in Sec. 7'3 we assume further that the signal is just
detectable if the shift of the average value of y due to the signal is of the
same order of magnitude as the standard deviation of ¥ when only noise
is present. Since the successive observations of r are independent, if
follows from (26a) and (26b)

Jour = 5 Vafaur + (Vo = NoR,
N
Gn = fN7

— 1 -
vk = 5z Wafh + Na@Ws = DI
Hence
Ysav — Ynv Ng fs+1v - fN
_Yuaw = w . @7
vy — @0 V' Na[ff — (Fo)2%
Since for small signal power the shift of the average value of f is pro-
portional to the signal power, the detectability criterion

Fsinv — Gn
3 — @»)

clearly leads to a minimum detectable average signal power

5 VN
Pow ~ - i (28)

= const.
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Or in words: The signal threshold for constant observation time is
proportional to the square root of the SRF and inversely proportional
to the first power of the PRF, in accordance with the experimental facts
mentioned earlier in this section. It hardly needs to be said that if all
sweeps contain the signal and noise so that Ny = N, Eq. (28) reduces to
the familiar inverse-square-root dependence of the signal threshold on
the total number of observations.

8-9. The Influence of the Signal Presentation Time and of the Screen
Material. The Effect of the Signal Presentation Time.—From the discus-
sion in the preceding section one would expect the signal threshold power
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Fia. 8:27.—8ignal threshold power vs. signal presentation time.

to be inversely proportional to the square root of the signal presentation
time & when the PRF is held constant. An experiment to test this
dependence was performed by Sydoriak, Ashby, and one of the authors,
and the results are shown in Fig. 8-27. Four curves are given; the top
two curves were taken for a PRF of 200 cps and a value for sr of 0.05 mm.
The open circles show the experimental points for a P1 (shért persistence)
screen, and the solid circles the points for a P7 (long persistence) screen.
The lower two curves were also taken for a P1 and P7 screen (using the
same coding), but the PRF was set at 3200 cps, and sr was fixed at 1.6
mm. The expected dependence is obtained roughly for all curves, but
there are departures from a square-root relationship for both small and
large values of 6. For values of 8 smaller than 0.1 sec, the signal threshold
power appears to be inversely proportional to the first power of 8; for
values of 8 greater than about 10 sec, the threshold power is nearly inde-
pendent of 8. Both of these facts can be easily understood. Tt is well
known that there is a maximum frequency with which the eye can
perceive successive events; this so-called ““flicker frequency ” is dependent
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on many factors but usually lies between 10 and 60 cps. It therefore
follows that if the sweeps are being continuously presented on the A-scope,
the total number of effective noise sweeps will never be smaller than that
given by the product of the PRF and the minimum resolution time of the
eye. Under conditions where 6 is very short, therefore, we should expect
Ny to be constant and from Eq. (28) the signal threshold power to be
inversely proportional to the first power of Ns. The transition between
the regions of different dependence is expected to occur where 6 is of the
order of the reciprocal of the flicker frequency, i.e., somewhat less than
0.1 sec. This result is precisely what is observed in Fig. 8-27.

It is clear that the human observer will not be able to integrate
properly what he sees over a very long time. If we assume him to have
a finite “memory’’ time, we should expect the threshold signal to be
nearly independent of 8 when § exceeds the memory time. This follows
hecause the total number of effective signal and noise sweeps, i.e., those
oceurring within the memory interval, is independent of 9. From an
inspection of Fig. 827 it can be seen that the effective memory time
appears to be perhaps 10 sec. It is not surprising that there is not a
sudden transition region for the effect; one would indeed be astonished if
the human memory time were characterized by sharply defined limits.

Nevertheless, the human memory time appears to be long enough so
that only slight help is noticeable in using the P7 screen, whose long
persistence acts to integrate noise and signal over a relatively long period.
It has been found by Sydoriak, Ashby, and one of the authors that train-
ing an observer appears primarily to lengthen his memory time.
Untrained observers may find the P7 screen much more sensitive than the
P1, although, as training proceeds, the scoring on the P1 screen improves
to nearly that measured on the P7 screen.

It may seem surprising that in the curves for the P7 screen at small
values of 4, a rapid departure from the P1 results does not occur. If the
P7 screen integrates all sweeps over an interval of a few seconds, it would
be expected to yield a signal threshold power inversely proportional to
the first power of 8 for values of 6 less than this integration interval.
This was not observed; it is believed to be caused by the existence of the
short-persistence initial “flash” on the P7 screen. For small values of 8
this flash causes the P7 to act very much like the P1 screen.

It is possible to check the assumption that was made concerning the
minimum resolution time of the eye and brain. It was stated that for
very small values of 8, the total number of effective noise sweeps was
independent of ¢ because of this minimum resolution time. However, it
is possible to conduct the experiment so that only the sweeps containing
the signal (and noise) are presented on the A-scope. This can be done by
the commutator shown near the upper left-hand corner of Fig. 8-1.
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For this type of experiment the signal threshold power would be expected
to be inversely proportional to the square root of 6, even for the smallest
values of 8. This is just what is experimentally observed.

The Effect of the Screen Material.—FEvidence has just been presented
that shows the effect on threshold signal of the use of different A-scope
screen materials. The chief characteristic of the screen with which we
are concerned is the time required for the light to decay after excitation.
Screen materials are now available that show widely different life times;
the P1 screen is the most commonly used short-lived material, and the P7
the most widely used long-lived material. The decay of light from these
screens is not exponential; it follows more closely a law given by the
reciprocal of the time. In the P7 screen an appreciable amount of light
can be observed several seconds after excitation, while in the P1 screen no
appreciable light remains after perhaps 0.1 sec.

In any case the persistence of the screen may be thought of as an aid
in the integration of multiple sweeps, a process that has just been dis-
cussed. The degree to which this integration aids in detecting a signal
depends upon how effective the observer memory time is. It has been
shown in Fig. 8-27 that for a trained observer the signal threshold power
is only slightly influenced by the added effect of screen integration. The
greatest influence, of course, is felt where the signal presentation time is
long; where the latter parameter is a few seconds, the P7 screen shows
perhaps a 2-db lower signal threshold power than does the P1 screen.

It is the importance of the observer memory time that led to the
early disappointment in the use of long-persistence screens. It was at
first believed that a substantial reduction in threshold signal would be
observed because of the screen integration. We now know that such
integration will not be effective in reducing the threshold signal power
unless the screen life time exceeds by a substantial factor the observer
memory time. Even so, a better method is a photographic process.
Information can be stored on a photographic film over as long a period of
time as is necessary. This procedure is easily demonstrated by observa-
tion of the photographs of Fig. 8-24. However, the usefulness of such
photographic storage is greatly limited by the contrast requirements of
the observer, already discussed, and the extremely long time inevitably
required for signal detection. Furthermore scanning requirements and
target motion reduce its utility.

8.10. The Dependence upon the Number and Spacing of Possible
Signal Positions and upon the Attention Interval. The Dependence upon
the Number and Spacing of Possible Signal Positions.—It was categorically
stated in Sec. 8-3 that the signal threshold power increases with the number
of possible signal positions. The phenomenon is shown graphically in
Tig. 8-28 where the ordinate represents the signal threshold power in
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decibels relative to its value for 50 possible signal positions. The
abscissa shows the number of possible signal positions. Two curves are
shown, the lower one representing results when the positions had a
uniform spacing of 1 mm and the upper one representing results when the
first and last positions were separated by 50 mm. The difference between
the two curves is not surprising; it has already been noted that the human
obszerver sees events on the A-scope face most easily when their separation
isabout 1 mm. If we were to draw a curve representing results where the
total distance of search remains approximately constant, we should
probably obtain a curve similar to the dotted line shown. This line,
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however, is actually a theoretical curve showing the expected dependence
on number of positions. It hasbeen derived by arguments that are given
in Sec. 7-5.

The agreement in shape between the theoretical curve and the average
experimental result lends support to the view that the fundamental
limitation in signal threshold power is due to the chance of a noise
fluctuation exceeding the average signal deflection.

The Dependence on the Attention Interval.—It is necessary to introduce
a new parameter called the attention interval 6,. We have assumed in
all the discussion so far that the observer searches for the signal only
during the signal presentation time 6. Actually we have seen that the
information which the observer assimilates may exiend over a time
longer than @; the reaszon for this phenomenon has been stated to be the
minimum resclution time of the eye and brain. There is still another
mechanism, however, by which the total information may extend over a
time interval longer than 6. Let us suppose that the observer is told
that the signal is to appear at an unspecified time within an interval 8,.
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To pick out the signal he will have to fix his attention on the A-scope
during the entire attention interval 6, even though he knows the signal
presentation time itself to be 8. As 6, becomes much larger than 6, the
signal threshold power must rise to offset the increased chance of finding
a large noise peak that would be confused with the signal. This increase
is just analogous to the increase in signal threshold required for an increase
in the number of possible signal positions. In other words, the total
number of possible signal positions is really the number of spatial signal
positions on the A-scope multiplied by the ratio 8,/8, since for any spatial
interval there are 8,/6 possible time intervals.
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Experimental data by S. Sydoriak showing the effect of attention
interval are presented in Fig. 829. In this figure two experimental
curves are shown in which the signal threshold power as ordinate is
plotted against the attention interval 6, as abscissa. The upper curve
was taken for conditions in which the PRF was 200 cps, and the signal
length on the A-scope sr was set at 0.05 mm. The lower curve was taken
for a PRF of 3200 cps and s7 of 1.7 mm. In both cases the signal presen-~
tation time 6 was fixed at 0.1 sec while the attention interval 8, was
varied from 0.1 sec to more than 20 sec. The results shown indicate the
signal threshold power Psg,, for six spatial signal positions on the A-scope.
The A-scope screen used for all experimental points was of the P7 long-
persistence type.
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Three types of coded points are indicated on the diagram ; two of these
are experimental points, and the third represents theoretical results to be
discussed below. The open circles show the experimental points obtained
when the attention interval was defined to the observer by ringing a bell
at its beginning and end. It was soon appreciated that for small values
of attention interval the reaction +16
time of the observer would cause
his attention to be spread over a 414

time interval not necessarily iden- \(
tical with the interval selected for +12 N\

N
the appearance of the signal. \\\\\

This defect was remedied by trig- z+10 &
gering the A-scope trace only dur- N \\\“zo\r
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+
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ing the desired attention interval,
thereby giving the observer infor-
mation during the specified time
only. This procedure yielded the
experimental points indicated by
squares. To show how the ex-
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tion of E. M. Purcell. Using the _61 2 4 8 16 32 &
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in Sec. 7-5, she has calculated the F1o. 8:30.—Signal power vs. number of
s s . observations N for various values of w. The
probablhty w that a glven possi- symbol w represents the probability that a

ble signal position will display a  noise deflection exceeds the deflection of sig-
larger deflection due to noise than " Plus noise.

the position actually occupied by the signal itself. The probability w
depends on the number of pulses N and on the signal strength. The
results of these calculations are shown in Table 2:1 of Vol. 1 of this
series! and are reproduced in Fig. 830, where for various values of w the
signal strength is plotted against the number of observations, N,

For a given criterion of threshold signal one must require the prob-
ability w to be inversely proportional to the total effective number of
signal positions. For the system parameters of Fig. 8:29 and with the
threshold power adjusted at one point in order to take into account, the

L Ridenour, Radar System Engineering, Vol. 1, Radiation Laboratory Series, p. 39.
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difference between the ideal observer and the actual observer, one obtains
the theoretical points shown in Fig. 8-29.

8.11. The Influence of Video Mixing.—It is often desirable to mix the
output indications of two or more separate receiving systems in such a
way that signals from either system can be seen. This can be done in one
of two ways: The video voltages of both systems may be added before
being applied to the indicator, or the A-scope sweep may be triggered
more rapidly than the repetition frequency of the various pulses, thus
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Fra. 8:31.—Signal threshold power »s. mixing ratio.
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st = 0.083 mm
Br =15
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] i sec
Curve 3, curve theoretical, points experimental
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on

Br = 5.1
PRF = 720 pps
8 = 2 sec

allowing the video signals from the several systems to be interlaced in
time. In the latter method, if we assume the average noise voltages in
the several systems to be identical, we may consider the signal from a
given system to occur at a given PRF, while the noise occurs at a higher
SRF. This is just the problem discussed in Sec. 88 in which the signal
threshold power was found experimentally and theoretically to depend
upon the quantity Ny*/Ns The quantities Ny and N refer to the num-
bers of sweeps containing noise and signal, respectively. In principle,
it does not matter whether the video voltages are added before the appli-
cation to the A-scope or appear alternately on successive A-scope sweeps.
We have assumed in either case that the observer makes use only of the
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average video deflections; therefore the two procedures should yield
similar results.

Let us now consider the more general case of the mixture of two video
systems (which we shall label Channel A and Channel B) in which the
average noise power in the two channels may be unequal. If the noise
in Channel B is much larger than that in Channel A, the threshold signal
measured in Channel A will have to be greatly increased to overcome the
greatly increased noise background. On the other hand, the threshold
signal measured in Channel B will be hardly affected by the slight increase
in its noise due to Channel A. It is convenient to introduce a new para-
meter, which we may call the mixing ratio. The mixing ratio is assumed
to be unity when the video noise levels in the two channels are equal.
Let us assume for the sake of simplicity that in this condition the i-f
power gains G, and G for Channels 4 and B, respectively, are also equal.
Under general conditions the mixing ratio M 4 for Channel A will then be
given by the ratio G5/G 4, while the mixing ratio M for Channel B is the
inverse, G./Gs. We may ask how the signal threshold power depends
upon these mixing ratios.

In Fig. 831 is plotted the experimental results for a two-channel
mixing experiment. The system parameters are indicated in the legend.
The signal threshold power is shown on the ordinate scale, while the
mixing ratio is indicated (logarithmically) on the abscissa. Three curves
are shown for different system parameters. Curves 2 and 3 have been
computed using the deflection criterion of Sec. 7-3 in which the constant
k has been adjusted to fit the experiments for very small mixing ratios.
The open circles are experimental points taken by 8. G. Sydoriak and
seem to agree satisfactorily with the curves. However, the experimental
square points that were made with the upper half of the A-scope trace
masked lie about 5 db below the theoretical curve. This has been traced
to a peculiar method by which the observer recognizes the signal. For
large mixing ratios the signal in Channel A has practically no noise
associated with it, therefore displaces the entire noise distribution of
Channel B by a fixed amount. Hence, just at the baseline the signal
creates a small open ‘“hole” within which no noise fluctuations can be
observed. This small hole is clearly discernible if sr is large enough and
the observer is no longer forced to average the entire noise deflection.
The “mouse under the rug,”’ however, will not be apparent if sr becomes
smaller than the spot size on the A-scope as is the case in Curve 2 of Fig.
831. The “mouse under the rug” effect is not apparent in Curve 3
perhaps because of the excessive value of sr.




CHAPTER 9

PULSE TRAINS IN INTERNAL NOISE; OTHER METHODS OF
PRESENTATION

In Chap. 8 an account was given of the factors that influence threshold
signals which are displayed on an A-scope. It has been mentioned in
Chap. 2 that other forms of presentation are in wide use; indeed, for radar
the intensity-modulated display, such as the PPI or B-scope, is at present
more widely used than any other display. For some applications the
detection of pulse trains by aural means is highly desirable, since by this
means the observer’s eyes are free for other essential tasks. In this
chapter an attempt is made to treat very briefly some of these display
systems. They have not, however, been so intensively investigated as
the A-scope from the point of view of signal visibility, and in some cases
even the experimental observations are not completely understood.

INTENSITY-MODULATED DISPLAY (PPI)

9-1. Similarities to the A-scope.—In Sec. 2-6 a brief description was
given of the various commonly used intensity-modulated displays. In
all cases the signal causes the trace on a cathode-ray tube to brighten; the
position and direction of the trace is made to display appropriate coordi-
nates of the antenna. In the ordinary PPI (plan-position indicator), the
cathode-ray trace is caused to sweep radially outward from the center of
the tube; range is indicated by the distance along a radius from the tube
center. The sweep is oriented at an angle corresponding to the azimuthal
angle of the antenna. In this fashion the face of the tube displays echo
signals from reflecting objects as bright spots; the positions of these spots
on the tube face correspond to the actual positions of those objects with
respect to the antenna. It is this mapping feature of the PPI which has
made it one of the most widely used display systems. The PPI will
therefore be treated in all the following discussions on intensity-modulated
displays; the results are, with minor changes, expected to hold for other
intensity-modulated presentations, such as the B-scope (which displays
the range-azimuth data in Cartesian coordinates).

The PPI differs from the A-scope in at least two ways. (1) To prevent
defocusing of the cathode-ray spot by large signals, the strength of the
video signal must be limited before application to the oscilloscope termi
nals. In practice one finds that this limiting action must occur even
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for some of the normal noise distribution and, if carried too far, can
profoundly affect threshold signals. This fact will be brought out in
Sec. 9-3.  (2) The manner in which the PPI is used nearly always brings
in a more or less complicated scanning factor. In the use of the A-scope,
discussed in Chap. 8, it was assumed that the signal pulse train was of
uniform amplitude for a time 6 called the signal presentation time;
however, as pointed out in Sec. 2:6, in the PPI the signal consists of a
finitespulse train (because of the narrow antenna beam scanning over the
target), which is repeated from scan to scan. We may already anticipate
from the A-scope results that this repetition feature may influence thresh-
old signals through some form of integration; the extent of this influence
clearly must depend upon the memory time of the integrating device.
These effects will be discussed in Sec. 9-2.

In addition to these new features of the PPI, there is an important
feature that applies to both the PPI and the A-scope. In radar search
problems one is seldom interested in the detection of stationary objects
producing steady echoes. An echo from an airplane, for example, con-
tinually fluctuates at rates that are generally functions of the nature of
the aircraft, flying conditions, and the wavelength of the radar system.
1t is clear that the specification of threshold power for a fluctuating signal
is more difficult than for a steady one. Some remarks and observations
on this subject are given in Sec. 9-5.

In spite of the new features introduced by the PPI, much that has
heen learned about the A-scope still applies. Most important, the basic
ideas that were developed for an understanding of the A-scope can be
carried over to the PPI. This feature has eliminated a great deal of
experimental labor.

The Influence of I-f Bandwidth.—As in the case of the A-scope (see
Sec. 8:6), an important parameter is the product of i-f bandwidth B and
the signal pulse duration 7. A detailed experimental study of the effect
of Br has not yet been made; preliminary work by R. R. Meijer and S. G.
Sydoriak,! however, has shown the same general behavior with the PPI
as with the A-scope (see Fig. 87). There appears to be an optimum
value of Br, above which the threshold signal power rises approximately
proportional to the bandwidth and below which it rises approximately
inversely proportional to the bandwidth. The reasons for this behavior
are the same as in the A-scope case. The essential difference between
the PPI and the A-scope curves, as indicated by the preliminary data, is
that the PPI curve is somewhat flatter and the minimum is shifted to
somewhat higher values of Br. Neither of these characteristics is cer-
tain; they should be verified by further experiments made under a wide
variety of conditions.

1 Unpublished.




240 PULSE TRAINS IN INTERNAL NOISE [Src. 9-1

The Influence of Video Bandwidth and Sweep Speed.—It has been
found that the effects of the video bandwidth and of the sweep speed are
interdependent, just as they were in the A-scope case (see Sec. 8-7).
The effect of sweep speed is, in fact, equivalent to a kind of video-band-
width limitation; the connection between the two is made through the
characteristics of the eye (and brain). In the A-scope case, experiment
showed that the eye was able to see signals most easily when the pulse
length on-the oscilloscope face sr was approximately 1 mm. Experiments
on the PPI have shown exactly the same behavior; an experimental curve
taken by C. M. Allred and A. Gardner is shown in Fig. 9-1. Signal
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in a bandwidth equal to 1/4r

threshold power in terms of receiver noise poweris plotted (logarithmically)
as ordinate, and the pulse length on the tube face sr is shown as abscissa.
The behavior of the threshold power is just the same as for the A-scope
(e.g., ¢f. Fig. 818). The conditions under which Allred -and Gardner
took the data were approximately as follows. The signal was made to
appear at one of six random range positions at a defined azimuth (known
to the observer). The antenna beam width ¢ was constant at 6°, and
the scanning frequency was constant at 6 rpm. The ordinates shown in
Fig. 9-1 are P4,, i.e., the signal power at 90 per cent correlation on the
“‘betting’’ curve (see Chap. 8). During these experiments virtually no
limiting of video voltages was present.

While no detailed data on the influence of video bandwidth b (or more
properly the quantity br) are yet available to the author’s knowledge,
there is no information that indicates a markedly different dependence on
this parameter for the PPI and A-scope. 1t is entirely possible, however,
that in the presence of severe limiting, different results will be obtained;
the limiter serves as a highly nonlinear element that distorts both ampli-
tude distributions and power spectra. Nevertheless, in the usual case
it is believed that the A-scope results will apply fairly well to the PPIL.

There is, in addition to the connection between video bandwidth and
sweep speed, a connection between video bandwidth and focus. This
fact was recognized in the A-scope case by the observation that defocusing
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in a direction parallel to the sweep was not serious so long as the spot size
did not exceed 1 mm (see Sec. 8-7); this fact was in accord with the sweep-
speed effect; for as long as the eye (and brain) partially neglects events
with a spatial separation of less than 1 mm, defocusing of this order of
magnitude was expected to have small effect. This same phenomenon
has been observed by R. Rollefson and J. L. Lawson! on the PPI.
Defocusing parallel to the sweep was not detrimental unless the spot
exceeded 1 mm; defocusing in a direction perpendicular to the sweep had
no effect until the spot size exceeded the spatial size of the signal caused
by the antenna beam angle ¢.

9-2. The Influence of Scanning.—It is through the process of scanning
that various time factors are introduced which correspond to the
(A-scope) signal presentation time #. It is clear that because of the
scanning frequency and the antenna beam width ¢ an effective signal
presentation time 6 exists for each scan. The pulse train may or may not
be repeated on subsequent scans, depending upon the conditions of
operation. Scanning, therefore, involves time factors that are expected
to influence threshold signal power because of memory, or integration,
effects. The main parameters with which we are concerned are (1)
scanning frequency, (2) antenna beam angle ¢, (3) PRF. The signal
presentation time 6 can be obtained from (1) and (2). A complete
ireatment of integration effects, which will not be possible here, would
also include extra noise sweeps (see Sec. 88), screen material (see Sec.
8-9), the number of possible signal positions (see Sec. 8-10), and the total
length of time the signal has existed. No experimental information
exists on extra noise sweeps, however. The screen material in a PPI
is so universally P7 (long persistence) that data on other screen materials
are scarce. The signal will also be assumed to exist either for one scan
or for an infinite number of scans. Finally, in most of the experiments
that will be mentioned, only six signal positions (in range) were available
and those at a defined azimuth (known to the observer). This corre-
sponds to the conditions most used in the A-scope experiments (see Chap.
8) but does not necessarily represent the condition most often encountered
with a PPI in actual radar use. Preliminary experiments have shown
that in accordance with the theoretical arguments of Sec. 8-10, an increase
in the number of possible signal positions brings about a rise in threshold
signal power. This is a relatively important consideration in a high-
resolution PPTI used for search purposes, where the number of possible
signal positions (all ranges and all azimuths) can easily exceed 106.

The Effect of Beam Angle $.—We may anticipate the effect expected
by a change in the value of the antenna beam angle from the results of
Sec. 8:9. 1If the scanning frequency is constant, a change in ¢ is tanta-

! Unpublished data.
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mount to a change in signal presentation time 6 as long as the signal
appears on only one scan, i.e., single-scan operation. For a constant PRF,
one would therefore expect the threshold signal power to vary as 6%,
and hence as ¢—*; this result is expected only if integration or memory
exists over the entire interval ¢ and if there is no inherent difference in
threshold power caused by the difference in geometrical shape of signal
on the oscilloscope face.
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F1a. 9-2.-—S8ignal threshold as a function of the presentation time for constant rpm.
System parameters

Pulse length 7 = 1 usec st = 0.75 mm
Br =1.1 Scanning time = 8 sec/rev
PRF = 800 pps

An experimental curve showing the effect of ¢ is reproduced in Fig.
9-2. The ordinate represents the signal threshold power (at 90 per cent
correlation) P, ; the abscissa represents the antenna beam angle ¢
plotted logarithmically. Also shown on the abscissa scale is the signal
presentation time 6, which in this experiment is simply proportional to ¢.
The data were taken for beam angles from 0.18° to 360°, corresponding
to #’s of 0.004 and 8 sec, respectively; the PRF was held constant at 800
pps and the scanning frequency was constant at 7.5 rpm. As can be
seen, over most of the range the threshold power is proportional to ¢=%
in accord with expectation; however, deviations exist at both ends of the
range. For very large beam angles (>45°) it is understandable that
signals are less efficiently seen, since one cannot simultaneously view the
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entire arc. Likewise for very small beam widths (<1°) the geometrical
size of the signal spot becomes smaller than 1 mm; one would expect
under this condition an increase in signal threshold power analogous to
the effect of sweep speed (see Fig. 9-1). In other words the eye (and
brain) discriminates against the (geometrically) small signal in favor of
wider noise fluctuations.

The results shown in Fig. 9-2 are important in that they show no
essential change in signal threshold caused by the geometrical arc length;
the entire effect can be thought of as a change in threshold signal caused
by a change in the number of (integrated) individual signal pulses. This
conclusion is interesting in that it contradicts the widespread opinion
that the wider signal arcs from broad antenna beam angles are easier to
see ‘“because they become more and more different from noise, which
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appears as a uniform, grainy background.” The fact is that the grainy
“uniform”’ noise can simulate false signals of any prescribed geometrical
shape; the particular shape is relatively unimportant as long as the total
number of signal (and noise) pulses is constant. To show this effect in a
somewhat different way, an experiment was performed in which the
signal presentation time # and the PRF were held constant. The beam
angle ¢ was varied by changing the scanning frequency. Thus, through-
out the experiment the signal arc length was changed over a wide range
but the total number of signal pulses was held constant. The result is
shown in Fig. 9-3; it is evident that over nearly all the range the threshold
signal power is virtually independent of ¢.

The results of Figs. 9-2 and 9-3 demonstrate that, at least in the range
from 1° to 45° the antenna-beam angle ¢ per se has little to do with
signal threshold power. It is important, however, in that usually the
PRF and scanning frequency are fixed; therefore the total number of
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signal pulses is proportional to ¢. It is only through this connection
that the threshold signal power does depend upon ¢.

The Effect of Pulse Repetition Frequency.—Figure 9-4 shows a single-
scan experimental curve of threshold signal power as a function of the
PRF. For this experiment the scanning frequency was constant at 2
rpm, the beam angle constant at 2° and 6 consequently constant at %
sec. The PRF, however, was varied from 25 to 6000 pps; this variation
produced the result shown. As can be seen, over most of the range the
signal threshold power is inversely proportional to the square root of the
PRF; this is exactly the result expected for signal integration over the
interval 6 (see Sec. 88).
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Fic. 9-4.—Signal threshold as a function of PRF.
System parameters
Pulse length 1 = 1 usec st = 0.8 mm
Br =1.1 Signal presentation time 8 =  sec
Beam width = 2°

The Effect of Scanning Frequency.—It can be anticipated that if ¢
is held constant, the scanning frequency would affeet the signal pre-
sentation time @ and hence the signal threshold power; in fact the signal
power should be directly proportional to the square root of scanning
frequency. This relationship, however, is not generally true at all for
multiple-scan data and only partially true for single-scan data. It is
approximately true for single-scan operation provided the scanning
frequency is between certain limits. The lower limit is fixed by the
maximum signal presentation time 6 over. which effective integration can
take place; this maximum time has been found to be several seconds, in
agreement with the corresponding A-scope value (see Sec. 9-9). In
other words, the signal threshold power does not decrease with scanning
frequency beyond the point where the signal is within the antenna beam
for several (perhaps 10) seconds. The upper limit of scanning frequency
is fixed by the condition that at least one and preferably a few signal
pulses must be present during the antenna transit. If this condition is
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not met, & high correlation on the “betting’’ curve may not be experienced
even for very large signals.

As soon as the signal is allowed to be present on several scans, a new
factor is introduced, namely, scan-to-scan integration. Since there is no
reason to expect the system’s memory for scan-to-scan integration to be
longer than the largest useful value of ¢ (about 10 sec), one might antici-
pate that scan-to-scan integration would be appreciable only if the scan-
ning frequency were higher than perhaps 6 rpm. This argument indeed
proves to hold; in fact, above 6 to 10 rpm the signal threshold power is
found to be relatively independent of scanning frequency. This result
is shown clearly in Fig. 9-9.1 It is sufficient for the present to note that
for high scanning rates, the scanning loss, i.e., loss in decibels because of
scanning, is relatively independent of scanning frequency. (The
scanning loss is, of course, proportional to the increase in threshold signal
power.) To understand this independence of scanning frequency it
should be noted that over a given integration interval, let us say 10 sec,
the total number of signal pulses is independent of scanning frequency.
As the scanning frequency is doubled, the number of scans to be integrated
doubles but the number of pulses per scan is halved; hence the total
number of signal pulses is constant. Using this argument, we can go one
step further toward understanding Fig. 9-9. The total number of signal
pulses in the integration interval may be compared for the two conditions
(1) in which no secanning occurs (‘“‘searchlighting’’ on the target) and (2)
in which rapid scanning occurs. One would expect the scanning loss to
be simply proportional to the square root of the ratio of the number of
searchlighting pulses to the number of scanning.pulses; this ratio is
clearly 360°/¢. This result is approximately verified in Fig. 9-9; for the
2° beam width applying to the aircraft data the expected scanning loss is
11 db, whereas for the signal-generator (2.8° beam width) data the
expected loss is 10.5 db. It should be emphasized that this simplified
method of computing scanning loss applies only for scanning systems in
which the frame-to-frame or scan-to-scan signal repetition frequencies are
relatively high.

Although the qualitative effects of scanning are understood, the exten-
sion of simple formulas to the very high discrimination radar sets (short
pulse and narrow beam angle ¢) must be made with great care. If
searching is done with extreme definition, it may happen that the total
number of signal pulses per integration interval is only two or three. This
condition usually invalidates the simple formulas; recourse must be had

! The lower curve was taken with a (steady) signal from a signal generator; the
upper curve shows the results obtained with an actual (fluctuating) airplane echo.

The significance of the difference between the two curves will be brought out in Sec.
9-5.

P —
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to the exact statistical calculations, such as those indicated in Sec. 8-10.
Such calculations usually indicate that the sensitivity of the high-
discrimination system is somewhat reduced over that given by the simple
formulas.

9-3. The Influence of Limiting.—In the usc of the PPI a certain
amount of video limiting ocecurs. This limiting is necessary in order to
prevent the oscilloscope from being defocused by large signals. In
addition, limiting has been found helpful in reducing the effect of certain
types of interference such as ““railing” interference (see Sec. 12-6). The
degree of limiting required depends upon the indicator, sweep speed,
amount of interference, etc.; the proper amount is usually estimated and
set by the observer. It has been found that, if limiting is not severe, the
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F1a. 9-5.—Betting curves for the one-channel limiting experim ant.

signal threshold power is not greatly affected by it. The unfortunate
characteristic of limiting, however, is that under certain conditions the
observer cannot tell by an examination of the noise background pattern
on the PPT whether the limiting is or is not severe. In other words, it is
very easy to set the limit level in terms of rms or average noise voltage at
a point such that the signal threshold power is very large, without being
aware of such a condition. For this reason it has been urged that the
limit level be set by a suitable instrument rather than on the basis of the
operator’s estimate; when this practice has been followed, it has pre-
vented large “unknown’’ decreases in system sensitivity.

The important characteristic in limiting is clearly the ratio L of the
limit-level voltage to the average video noise voltage. Some other feature
of the video noise amplitude distribution could, of course, be chosen as a
reference; however, the average noise voltage is convenient as it can
usually be measured directly with a d-c meter. Large values of L indicate
only mild limiting; small values of L (perhaps less than 2) show relatively
strong limiting.

The effect of the limit level L is made evident in at least two important
ways: (1) The signal threshold power at any point on the “betting’’ curve
rises as L is reduced: and (2) the slope of the betting curve decreases
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with decreasing L. These two characteristics are brought out clearly in
Fig. 9-5, where three sample betting curves are shown for different values
of L. The data were taken by Sydoriak.! In this series it can be seen
that as L is reduced, the signal threshold power increases and the slope of
the betting curve decreases. In fact, for a value of 0.56 for L, it is not
certain that the betting curve ever actually reaches 100 per cent correla-
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tion. The reason for this effect appears to be that a highly limited signal
cannot necessarily override chance noise fluctuations if the tube spot size
is large compared with the signal pulse. On short sweeps the effect is
much less noticeable; this observation is in accord with simple reasoning.

The relationship of signal threshold power to limit level L is shown in
Fig. 9-6 for a typical case. It can be seen that for values of L less than
unity a substantial increase in signal threshold power occurs. Therefore
in the operation of a PPI care should be taken to ensure that L is larger
than unity.

It has been found that when video mixing occurs (see next section),
one has to be especially careful about limiting. Consider the case in
which one channel is severely limited while the other is not; the mixed

'8, G. Sydoriak, “The Effects of Video Mixing Ratio and Limiting on Signal
Threshold Power,” unpublished.
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video output will show no well defined ‘‘ceiling”’ because of the unlimited
part of the noise. Consequently, the appearance on the PPI will be
nearly normal regardless of the limiting in the first channel; the operator
is, therefore, completely unable to judge the system sensitivity by an
examination of the noise pattern.

9.4. Video Mixing.—The influence of video mixing on signal threshold
power with PPI presentation is similar to that with an A-scope display
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(see Sec. 3-11). In the A-scope case, however, it was possible to utilize
the ““mouse under the rug,” i.e., “holes’ near the baseline of the ampli-
tude distribution, to obtain greatest sensitivity. In the PPI, the most
sensitive part of the amplitude distribution cannot be selected; the entire
distribution is averaged in some manner to create the total light output
from the screen. One might expect intuitively, therefore, that the PPI
would give mixing results more in accord with simple theoretical
considerations.

Experiments by R. R. Meijer, S. G. Sydoriak, and D. Gillette' on
two-channel single-scan PPI mixing have yielded results similar to those
shown in Fig. 9-7. 1In this figure the system conditions were as follows:

! Unpublished,
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scanning frequency 6 rpm, beam widih ¢ 1°, PRF 400 pps, Br = 1.5,
st = 0.8 mm. The curve agrees qualitatively with a mixing theory
similar to that for the A-scope (see Sec. 8-11). However, unlike A-scope
presentation, the PPI does not permit one to see any ‘“mouse under the
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Fig. 9-8.—Scattering cross section of a Bl-gﬁ airplane at a wavelength of approximately
cm.,

rug’’; the brightness of a spot is proportional to an average of a function of
the entire amplitude distribution. This function of the amplitude dis-
tribution is uncertain; it is determined by the linearity of the videe
amplifier, the limiting, and the dependence of the screen brightness on
the exciting current.

9-6. Signal Fluctuations and Target Movement.—In many instances,
for example, in radar search, one is interested in the detection of a feeble
signal that is not necessarily steady but may fluctuate in time. A reflec-




250 PULSE TRAINS IN INTERNAL NOISE [SEC. 95

tion pattern! from a B-26 airplane is shown in Fig. 9-8 to help the reader
appreciate the magnitude of such fluctuations. This pattern was
obtained on a special automatic recording device that plotted the relative
back-reflected signal strength (at a wavelength of approximately 10 ¢m)
as a radial deflection on the diagram. A B-26 airplane was placed on the
ground and slowly rotated in azimuth with respect to the incident (and
reflected) radiation; the azimuthal coordinate of the airplane was auto-
matically recorded on the diagram in Fig. 9-8. Care was taken to
illuminate the airplane uniformly without appreciable reflection from the
ground. Although it is true that the finished plot does not represent
correctly the reflection pattern of a B-26 in flight (because of different
aspect, etc.), it does show clearly the type of detailed structure and the
extent to which the reflection intensity varies at different azimuth
settings. The concentric marker circles shown on the diagram represent
relative reflected signal power expressed in decibels. It is easy to see that
the total range in reflected intensities exceeds 35 db, or more than a
factor of 3000 in power, and that the change in intensity with even
minute changes in azimuth angle can be fairly large. It follows that the
echo from an airplane in flight (which necessarily changes azimuth more
or less constantly) fluctuates over wide limits; the amplitude of these
fluctuations is shown by Fig. 9-8, and the frequency of fluctuation is
determined primarily by radar wavelength and flying conditions. In
addition to the fluctuation caused by the gross movement of the airplane
there are rapid contributions caused by the rotating propellers,? which can
yield frequencies up to 1000 or 2000 cps.

In dealing with fluctuating sighals care must be exercised in carrying
over the results obtained with a steady signal. We have seen that under
some conditions, e.g., severe limiting, the slope of the betting curve can
be greatly altered; it is obvious that, if the signal fluctuates over a wide
amplitude, the conclusions arrived at with the steady signal ought to be
disregarded. With respect to scanning loss, one can see qualitatively
what to expect. Over a long time interval (such as would be obtained
“searchlighting”) the chance of utilizing a large fluctuation peak is
relatively great, whereas for a single-scan measurement with a narrow
beam and hence a small signal presentation time 6, the chance of finding
a high signal fluctuation is relatively smaller. Therefore one would
expect a greater scanning loss with fluctuating signals, e.g., airplane
echoes, than with a steady signal. An experimental confirmation of this
reasoning is shown in Fig. 9-9, where the scanning loss in decibels is shown

! This pattern was taken by R. M. Ashby, F. W. Martin, and J. L. Lawson. See
their ““Modulation of Radar Signals from Airplanes,” RL Report No. 914, Mar. 28,

1946.
2 Ibid.
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as a function of scanning frequency in revolutions per minute. Two
experimental curves are shown; the lower curve is the result obtained
with a signal generator; the upper curve shows the result using actual
echoes from an airplane in flight at a wavelength of 10 em. All system
parameters for the two curves were the same, with the exception of the
effective antenna beam width; i.e., PRF = 400 pps, Br = 1.5, s = 0.5
mm. The beam width for the upper curve was 2° and for the lower curve
2.8°. It will be noticed that the airplane-echo scanning loss was 4 db
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higher than that for the signal generator, of which 0.5 db can be accounted
for in the difference of beam angles (see Sec. 9-2). It appears that the
remaining 3.5-db loss is due to the fluctuating character of the signal, in
line with qualitative expectations.

In addition to the lack of complete treatment of fluctuating signals,
answers do not exist at present to a number of interesting and funda-
mental questions. One of these questions is the effect of target movement
on signal threshold power. It is clear that the scan-to-scan integration
which leads to a scanning loss independent of (high) scanning frequency
might be upset if the signal is displaced appreciably on the PPI from
scan to scan. Certainly no screen integration takes place under these
conditions; yet it is possible that the eye and brain can recognize uniform
movement and still perform the equivalent of integration. Some
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preliminary experiments on this point by V. Josephson have shown a
dependence of signal threshold power on target velocity, but these
experiments are not sufficiently complete to show the precise mechanism
involved. On the other hand it is a common experience with radar
observers that a moving signal-generator pulse is apparently as easy to
recognize as a fixed signal. More experimental information is required -
to understand this problem.

AURAL AND METER METHODS OF DETECTION

9-6. Theoretical Results for the Signal Threshold.—The aural and
meter methods of detection of a radar signal have been described already
in Sec. 2'6, and a rather complete theoretical discussion of the signal
threshold has been given by Van Vleck and Middleton.! Only a short
account of the theoretical results will be presented, since no systematic
experimental investigations have been made with which the theory can
be compared.

In the aural method of detection the observer listens to the audio tone
produced by the PRF of the signal. In terms of the spectrum of the
signal and noise (¢f. Sec. 7-2) the audio tone is represented by the signal
peak at the frequency 1/6, if 6, is the pulse repetition period. Since 6,
is always much larger than the pulse length 7, the power of the signal peak
will be the same as the power of the d-¢c component, that is, the average
value of the power distribution in the pulse train after it has been
deformed by the i-f amplifier and rectified by the second detector. If,
before the i-f amplifier, the pulse is represented by

S(t) = SoF (;t) cos 2nfit,

then it can be easily shown (¢f. Sec. 7-2) that the average value of the
deformed and rectified pulse train is given by

Szr [t z\ [
E/_w dz |G(z)Z, (B—T)I, )

+ e
G(z) = /_, dy F(y)e—*rv=

and Z,(f/B) is the system function of the i-f amplifier, which has the
bandwidth B. A quadratic second detector has been assumed.
The qualitative behavior of the function

ft= z
R(Br) = / dz |G(x)Z, (E) 2)

1J. H. Van Vleck and D. Middleton, “Theoretical Comparison of the Visual,
Aural and Meter Reception of Pulsed Signals in the Presence of Noise,” J. Applied
Phys., 11, 940 (1946).

where

2
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can be seen as follows. For small values of Br the i-f amplifier lengthens
the pulse from 7 to 1/B and diminishes the signal amplitude from S, to
SoBr. The average pulse power is therefore in this case of the order

1 T
22 2 = 2
S:B Bo, = S3 B Br.

On the other hand for Br > 1 the pulse will not be deformed by the i-f
amplifier, so that the average power will be Sir/0,. Therefore the
function A(Br) approaches unity for Br 3 1 and is proportional to Br for
small values of Br.

The power of the signal peak has to compete with the noise power in a
narrow range of frequency A around the audio tone 1/6,. Since 1/6, is
so small, one may take the initial value of the continuous noise spectrum,
which for a square-law detector is proportional to the bandwidth B.
Hence in the notation of Sec. 7-2, the square of the noise power in the
frequency range A is [¢f. Eq. (7-28)]

80'BA. (3)

According to the power criterion (cf. Sec. 7-3) the minimum detectable
signal power is determined by putting the ratio of the signal power to the
noise power equal to a constant. Thus one obtains

= Sir A A/ Br
Pmin = (E)min = kaﬂ'z ;BTBT—) (4)

At this point it is good to remember that in the aural method of
detection one usually gates or strobes the incoming signals. In this way
a considerable improvement of the signal threshold can be achieved,
since it is clear that the gating will nof change the power of the audio tone
whereas the noise power will be reduced. In fact it can be seen that if [
is the length of time that the pate stays open, the signal threshold is
reduced by the gating factor (1/64)*. A simple formal proof of this state-
ment runs as follows. With gating, the noise amplitude after the i-f
amplifier can be represented by

N() = fOIX () cos 2nf.d + Y (¢) sin 2nf.4],

where f(t) is a function that is unity when the gate is open and zero
otherwise. Assuming a square-law detector, the video output will be

r() = POX? + ) = PO 0.

To find the spectrum we calculate first the correlation function

R() = PO+ 1) = AW o ﬁ “wpOPe -+, ©)

1 This is for a rectangular i-f pass band of width B.
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where we have made use of the fact that for a square-law detector and
without gate the correlation function of noise alone is equal to 4W2p%(r)
(¢f. Sec. 7-3). Now if > 1/B, then for all values of  for which p(7)
is different from zero, the integral in (5) is very nearly equal to I. The
gating therefore reduces the correlation function by the factor 1/0,.
Consequently, the square of the noise power in the frequency range A will
be reduced by the same factor; and since the power of the signal peak has
not changed, the signal threshold will be lowered by the factor (I/6,)%*.

In the meter method of detection the aural signal is rectified and
impressed on an ordinary d-c¢ meter. The deflection of the meter
determines the presence of a signal. In terms of the spectrum the situa-
tion is clearly similar to the case of the visual detection of a c-w signal.
The audio filter takes the place of the i-f pass band and the meter is
analogous to & low-pass video filter. Further investigation is necessary,
however, to show that for the rectification of the audio signal and noise
the formula of Sec. 7-2 can be used again. The difficulty lies in the fact
that the audio noise is not Gaussian, since it originates from the rectifica-
tion of the original Gaussian noise passed by the i-f amplifier. In general,
therefore, the different frequency components of the audio noise are not
independent of each other, nor are their amplitudes distributed according
to a Gaussian distribution. However, it can be shown that, if the width
A of the audio filter is small compared with B, then the noise passed by the
audio filter is again approximately Gaussian.! In this case, therefore, the
equations of Sec. 7-2 can be used again. Using again the power criterion
it is then easily shown that for the meter method of detection

5 (S7) _ ,_,i/A_A_m\/E
Pmm = (eo>mm = ]('mU ? TBT), (6)

where A, is the width of the low-pass filter, which is characteristic for the
d-c meter, and &, is a constant of the order of magnitude unity.

9-7. The Equivalence with the Visual Method of Detection.—In Sec.
8:7 it has been shown that for the visual method of detection the minimum
detectable signal energy is given by an expression of the form

N(zy)

(807)min = a2C Hzy) (7

where x = Br, y = br, and C is a constant, which still depends on the
time of observation. The function N(x,y) is the fluctuating noise power,
and SEH (z,y) 1s the maximum value of the pulse after it has been deformed

1Cf. M. Kac and A. J. F. Siegert, ““On the Theory of Noise in Radio Receivers
with Square Law Detectors,” J. Applied Phys., 18, 383 (1947). In this paper a
detailed study is made of the probability distribution of the output of the audio filter
for different values of the ratio A/B.
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by the i-f and video amplifiers. For an explicit expression of the func-
tions H and N see Eq. (8-18); here we will need only the qualitative
dependence of Sir on the i-f and video bandwidths. As has been shown
in the beginning of the theoretical part of Sec. 8-7, Sir will be an absoclute
minimum if x = Br is of order unity and if ¥ 3> z. The ratio N/H is
then of order unity. Suppose, furthermore, that the train of pulses has
the length 6, so that it contains 6/6, pulses. Every time a pulse is pre-
sented, a visual observation can be made; and if the observer can integrate
all the observations, then, as has been shown in Secs. 7-3 and 7-5, the
constant ' will be inversely proportional to the square root of the total
number of observations, so that

- S0
C =k y[75 @)

where k, is a constant of the order of magnitude unity. In the case
Br = 1 the visual method can therefore detect, at best, the average signal
power P given by

1 .
V69,
Let us compare this result with Eq. (4), which gives the minimum detect-

able average signal power for the audio method of detection. Since for
Br = 1, h(B7) is of order unity, one would get from Eq. (4)

Pm'm = foo? .ng (9())

which is usually much larger than the value given by Eq. (9¢). However,
as already mentioned in Sec. 9-6 a considerable improvement can be
achieved by gating or strobing the incoming signal. The improvement
factor is ({/0,)* if [ is the length of time that the gate stays open. Clearly
it is best to take [ = 7 in order to admit the maximum amount of signal
power and the minimum amount of noise. For a pulse train of length 8
the signal peak will have a width of the order 1/8. The best value for
the width A of the audio filter will therefore also be of the order 1/4.
Taking in Eq. (9b) A = 1/8 and multiplying Eq. (9b) by the best gating
factor (r/60)% lead to an equation of exactly the same form as Eq. (9a),
which shows that in the case Br = 1 the visual and aural method of
detection are equivalent.

The same conclusion is reached for the case Br << 1. With the visual
method of detection it is best to take the video bandwidth b much larger
than B, Since for y> zxz and t K1, N =~ gz and H = z2 (see Sec. 87),

Puin = kyo? (9a)
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one obtains from Eqgs. (7) and (8)

Pria = kyo? 1_ 1 (10a)
/06, Br
An equation of the same form is obtained for the aural method from Eq.

(4). Since for Br < 1, h(Br) = Br, Iiq. (4) becomes (with A = 1/6)

1 1
Vi VB
Sinee the pulse is now strongly deformed, so that the pulse length has
become of the order 1/B, the gate length I should now be taken equal to
1/B. Multiplying Eq. (10b) with the best gating factor (1/B6)* one
obtains an equation of the same form as Eq. (10a).

Tinally consider the case Br>> 1. With the visual method of obser-
vation an improvement can now be obtained by narrowing the video
bandwidth b to a value of the order 1/7. Since for z>> 1 and y = 1,
N/H is of order z’¢, one obtains from Eqs. (7) and (8)

\/Br. (11)

Priw = k.o?

(106)

= 1

L = 2
Poiw = koo o
An equation of the same form is obtained for the aural method from Eq.
(4), since for Br>» 1, h(Br) = 1, A = 1/6 and the best gating factor is
(t/60) "

Also for the meter method one reaches the same conclusions, since
obviously the best choice for the meter bandwidth A,, is also 1/8, just as
the bandwidth A of the audio filter. This choice makes Egs. (4) and (6)
of exactly the same form, so that the arguments given for the aural
method are also applicable to the meter method of detection.




CHAPTER 10
MODULATED PULSE TRAINS

This chapter treats the problem of the modulated pulse train. As is
pointed out in Secs. 2-7 and 2-8, many types of modulation are possible,
namely, a-m pulses, f-m pulses, width-modulated pulses, etc. These
methods differ somewhat in detail, but the general solutions are similar.
A detailed discussion of the a-m pulse train will therefore serve as a
suitable example for other types of modulated pulse trains. To be
specific, let us consider the case where the amplitude modulation consists
of propeller modulation on the radar echo pulses returned from an air-
craft. Before examining the effect of the propeller modulation itself
(see Sec. 10-4), however, the behavior of the receiving system in response
to a single modulating tone or frequency must first be discussed in detail
(see Secs. 10-1 and 10-2).

10-1. The Receiving System. The Receiver.—As is pointed out in
Sec. 2-7, the receiver is usually of a superheterodyne type with a linear
second detector, with a linear third detector (or “boxcar” generator),
and with some form of AGC. A block diagram of such a receiver is
shown in Fig. 2-12/¥ To be definite, let us assume the demodulated audio
signal to be the voltage output of the third detector, or boxear generator,
and the AGC feedback to be derived from the average value of the audio
signal. This average value is, of course, obtained from several cycles of
the modulation, and it can be assured if the low-pass filter in the line
between the third detector and the gain-control connection has an h-f
cutoff much lower than the lowest desired audio frequency.

The third detector will be assumed to be a boxcar generator of the type
described in Sec. 2:7. In the formation of boxcars the potential of some
storage element, such as a capacitor, is made to assume the voltage of
video signal at the instant of the latter’s occurrence. The storage element
is then disconnected from the video system and remains so until the
arrival of the next video signal. In this fashion, flat steplike segments
occur in the boxcar output voltage waveform, whose amplitudes are
governed by the desired signal. As is pointed out in Sec. 2-7, the
advantage of the boxcar output over other forms of audio demodulation
is that it furnishes a large audio amplification plus a type of filter action
that completely suppresses the PR¥ and all its harmonics.

There are several methods that make the storage element assume the
257 '
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potential of the signal. In order that only the desired signal be made to
actuate the storage element, a selection circuit is needed to sensitize the
boxcar generator at the desired instant. This selection cireuit may con-
sist of an accurately timed impulse that is made to coincide in time with
the desired radar echo and allows the boxecar circuit to be activated by
the desired video signal. Thus the errors in timing that can be tolerated
in this form of selection circuit are obviously less than the radar pulse
duration, i.e., usually less than 1 usec. Since this precision is difficult
to obtain, it is customary to provide a time gate, or strobe (see Sec. 2-6),
which sensitizes the video section only during a defined range interval.
This range interval may be several times the pulse length; hence it is
much easier to set the gate on the desired echo than in the case of the
accurately timed impulse already described. The gate length @ has a
direct bearing on signal detectability, as will be shown in the next section.

Within the time interval allowed by the gate, it is possible that besides
the desired echo, both receiver noise and perhaps other undesired signals
or interference will appear. The signal-modulation perceptibility in the
boxcar output depends upon how the boxcars are formed from the gated
video signals. Two methods of formation are customarily considered.
In the first method the boxcar height is proportional to the average video
signal within the gate, and in the second method the height is propor-
tional to the peak video signal in the gate. Since the signal-modulation
detectability depends upon the method of boxcar formation, it will be
convenient to distinguish them. If the boxcars are formed from the
average video signal, they will be referred to as “average value’” boxears;
and if they are formed from the peak-video-signal model, they will be
denoted by “peak value” boxcars. Tt is clear that peak-value boxcars
tend to accentuate the effects of the larger video signals within the gate;
and since the largest signal is usually the desired echo, the peak-value
boxear circuits are usually desirable.

The AGC is indispensable to keep the average value of the third-
detector output signal constant. This is done to reduce the effects of
signal fading. In the absence of input-signal fading the AGC is
essentially inoperative and can therefore be neglected in the following
discussion. As will be shown in the next section, the properties of the
system depend, however, upon the ratio of carrier signal power to noise
power; therefore, as a function of this parameter, the magnitude of the
output voltage of the audio system will depend upon whether the AGC is
used or not. If the AGC is used, the average value of the third-detector
voltage output is constant; if not, the over-all gain of the receiver is
constant. With this in mind, a little thought will show that in both cases
the average value of the boxcar-generator output is independent. of the
PRF. This characteristic makes such a type of audio demodulator ideal
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for deriving AGC voltages in a system with a variable PRF. It is prob-
ably the only type of demodulator that has this desirable feature.

There are certain practical difficulties in the construction of a high-
quality boxcar generator, chiefly the provision of a storage element that
has a small leakage of charge between pulses and can be rapidly charged
or discharged during the desired video pulse. The circuit developed by
H. L. Johnson and J. L. Lawson! produces exceptionally high-quality
boxcars. They are flat to within a few per cent for time intervals as long
as 1 sec, yet they can be actuated by a video signal as short as 0.03 usec.
This is accomplished in two steps: (1) The video signals are “stretched”
into pulses perhaps 20 usec long by a special diode circuit; (2) then the
“stretched” pulses actuate the condenser storage element. In this way
the storage-element leakage can be minimized because the maximum
charging current is kept low. The entire circuit is shown in Fig. 10-1.
It is designed to accept positive video input signals not greater than 5
volts in amplitude and will deliver audio boxcars of approximately 20
volts for such video signals. Tt also requires an input trigger from the
radar set oceurring at times corresponding to the transmitted radar pulse.

"The video signals are put on the grid of V.. The three tubes V4,
V15, and Vi, constitute a wide-band video amplifier that serves to produce
a negative video signal of about 60 volts in the 300-ohm plate resistor of
Vis. The plate of Vi is direct-coupled to the cathode of the special
diode V15, whose plate is, in turn, run at a bias voltage of about +150
volts. This diode was chosen for its large conductivity and its small
interelectrode capacitance. Unless Vi; is made to conduect, the diode
V1s will not conduct even for the large video signals produced by V.
However, when the gating pulse, whose generation is discussed below, is
produced in the plate circuit of Vi;, the negative video signals will cause
the diode to conduct until its plate assumes the most negative value
reached by the video signals in the gate interval. This value of voltage
will be maintained until a positive pulse in the grid of V3 returns the
plate voltage of Vi, to its original value. The plate voltage of Vi
therefore amounts to a stretched video pulse. The cathode follower Vy
reproduces the stretched pulse (perhaps 20 wsec long), and during this
time the storage condenser in the cathode of V,; is made to assume this
same potential. This is done by the action of a positive pulse on the grids
of Vi and V,; produced by Vg just at the end of the gate itself. The
positive pulse on Vs and V5 causes one or both of these tubes to conduct
so that the cathode of V3, assumes the voltage of the stretched pulse on
the cathode of V1. The cessation of this ‘““clamping’’ pulse produced by

1See R. M. Ashby, F. W. Martin, and J. L. Lawson, ‘‘ Modulation of Radar Signals
from Airplanes,”’” RL Report No. 914, Mar. 28, 1946.




Pulse _——"‘_—__! __4+250v . . A
transformer ], 15k : lao 5k S 5kl .
Trigger 145EW 21M I‘:ZW 145(EW I 1w I° 3 5uh Suph 10 54
in 1y S15k | wI I 2O)
®ono 92w la5k 2k Gate
0.001 | 320w 2w marker
| 25 1

-
275k
-105v
-105v 1 — +150 v
| - " 0.001 I
" 0.006 Internal delay control ] external le, 1 IVZiBHBG jr250 k
0.003 — o delay 2
1w control T T
:(_G_OELO? 20kl,3 ul) K — | P o:: Viz
3 5071
" Helipot{ 1w L@;I F6A5L
5k 1w REEE 16‘:; b \
Delay circuits Delay trigger 4 Gate multivibrator 5 o0

092

SNIVYJZ AS11d AdLVINAON

1-01 "0ag)|



b3

Video input 4 aj b} cf
250 v
< 10ks <224k
1.270'( 2ws  Slw
0.0001
- 510
+*
I 0.05 =
ot = S G AR Diiy'7 Y AT
12807 Va | | Viz T esity
12807) [6SN7 22
001 3100k | 240k$ Tw$ 503
k.
» +150v
— 4250 v
400 k
1w
18M
Vo ! ot Vas
65N7 2% t005 125)7 Vs
] I Vi 22 ﬁ} = 2s
Pl 128572 o= == .
Time const. S Audio output
switch 200kg * o -
4 " 200 A
AGC output " wkl 50v 12M 2w g?ﬂk
! k
320k $30k 20Kk < Li00k
VA AN - 150v
b 15k 100k
2w

F1a. 10-1.—Wide-band boxcar and AGC circuit.

{1-01 "oqg

WHALSAS ONITATADOAY HHL

192



262 MODULATED PULSE TRAINS [SEC. 10-1

V1, disconnects the storage condenser until the next pulse is produced.
The cathode potential of V2., and hence of the cathode follower Vi,
therefore, is the audio boxcar voltage desired. For convenience, the
major portion of the d-¢c voltage is removed by the connection to Vs,
whose output voltage is essentially the desired boxear audio component.
The tubes Vg, Var, and Vs, serve as a direct-coupled amplifier from which
the AGC voltage may be derived. The low-pass filter in this AGC link
is placed in the grid circuit of Vas; its frequency limit can be made higher
or lower than the modulation frequencies as desired.

The production of the delayed gate and associated timing pulses is

accomplished by the tubes V3 to Vi, and their associated circuits. For
any trigger pulse from the radar set that operates the blocking oscillator
V,, a standard trigger pulse of uniform shape appears on the grid of V..
The tubes Vs, V3, V4, and V; form a high-precision delay circuit operating
the blocking oscillator Vi, which, in turn, produces the delayed trigger.
The amount of delay is controlled by the delay-control potentiometer
that adjusts the potential on the grid of V4. An idea of the precision
available in the delay time may be obtained by noting that for a delay
time of 2000 usec a flutter, or variation in delay, of less than 0.1 usec is
-ordinarily experienced. The delayed trigger operates the tubes in the
monostable-state multivibrator, or “flip-flop” circuit, V; and V;, which
produces a small additional delay in time before operating another flip-
flop circuit, composed of Vs and Vi, producing the gating pulse. This
small delay is helpful in observing the gate or gated signals on an external
R-scope (see Sec. 2-6) operated from the delayed trigger itself. The
gate-generating circuit whose output is connected to the power tube Vy;
is shunt-peaked for adequate transient response and can generate a
satisfactory gate. The gate length is adjustable from 0.1 to approxi-
mately 50 usec. The trailing edge of this gate actuates the flip-flop
circuit Vi that generates the relatively long clamping pulse as described
above. The trailing edge of the clamping pulse, in turn, generates a
short pulse in Vi, which causes the stretched pulse, produced by the
diode V1, to terminate.

Several precautions have been taken to prevent hum voltages from
appearing in the audio output. A “hum balancer” is shown in the
cathode of V¢, and all hum-sensitive tubes are operated with d-c filament
voltages. These tubes are Vz, Va, V4, V5, Vlg, V21, ng, V23, V24, Vz.».,
Vs, and Vo7 and are for the most part pentodes operated as triodes. By
these methods the hum appearing in the audio output has been reduced
to a value less than 10 mv peak to peak.

The storage element, as can be seen, is a 0.001-f condenser in the
cathode circuit of Vj,. To reduce the leakage from this condenser to a
satisfactory value, it is necessary to operate the filaments of the tnbes
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Vs, Va3, and Vag at about one-half the rated voltage. If this is done, the
boxcars will be flat to within a few per cent even for time intervals as long
as 1 sec.

The charging time of the boxcar generator is governed by the video
response of the circuits between the video input terminals and the cathode
terminal on V. Up to the plate circuit of V¢ the circuit is simply a
conventional shunt-peaked video amplifier. However, the forward
resistance of the diode Ve, appearing as a series element in the coupling
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Fia. 10-2,—Audio-frequency reed meter.

circuit, is large enough to upset the peaking design of this network. The
best value of inductance to use is most easily found by trial. With the
value indicated in Fig. 10-16 the over-all video bandwidth to the hali-
power point exceeds 10 Mc/sec. This ensures an adequate response for
video signals as short as 0.03 pusec.

The Indicator.—Many forms of indication are possible, but for the
sake of brevity only one method will be discussed—that suggested by
R. M. Walker, which has lent itself well to experimental work. In this
indicator a bank of electrically excited reeds is incorporated with the
necessary audio amplifier. Each reed is characterized by a particular
resonant frequency and by a damping term that fixes its bandwidth, or
equivalent @. Inspection of the bank of reeds will provide an audio-
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amplitude analysis of the audio signal, provided the bandwidths of the
successive reeds are roughly similar. A photograph of a set of reeds
suitable for experimental analysis is shown in Fig. 10-2. The frequency
range covered by this instrument is approximately 16 to 85 cps. In this
photograph is shown the response of the instrument to a 70-cps audio
modulation in receiver noise. Further details will be discussed in the
next section.

.The problem of driving such a bank of reeds from an audjo source of
varying amplitude is similar to the problem of making the radar receiver
respond to a varying input signal. The problem of finding some method
of alleviating saturation in the amplifier is solved by providing the
necessary audio amplifier with an AGC that operates from the modulation
amplitude. In this way the average audio voltage driving the reeds will
be maintained essentially constant. If this audio AGC is used, the
indicator system can be made to operate at maximum sensitivity.

10-2. Experimental Results.—In discussing the experimental results,
it is desirable to consider controlled experiments made under four
different conditions. These conditions are chosen by fixing various values
of signal, noise, modulation frequency, and fractional modulation.

Behavior of a Noiseless Receiving System in the Presence of a Signal.—In
the following discussion the signal-carrier amplitude will refer to the
unmodulated pulse amplitude. When modulated less than 100 per cent,
the average pulse amplitude is, of course, equal to the unmodulated pulse
amplitude and plays the same role in this problem that the carrier plays
in ordinary radio modulation. Let the signal pulse length be represented
by 7, the gate length by G, the signal modulation frequency by p, and the
fractional modulation by e. When the signal falls within the gate, the
receiver AGC adjusts the receiver gain so that the average height of the
video signal and therefore the average output voltage of the peak-value
boxcars are held at a constant value. Since the signal is the only voltage
in the gate, the entire behavior of the system is independent of the gate
length  and the section of the gate in which the signal is found.

The frequency analysis of the boxcar output can be found from Eq.
(2-29). Tt is necessary in that expression only to put in a value for pulse
length equal to the reciprocal of the PRF f.. A convenient nomograph
for obtaining all the output frequencies is shown in Fig. 2-12, where the
vertical lines located at the PRF and its harmonics must be eliminated.
In this nomograph the amplitudes of the various frequency components
are unchanged by traversing the diagram in a vertical direction. It may
seem strange that if two input signals of equal modulation amplitude, one
at 20,100 cps and the other at 100 cps, are introduced into identical box-
car generators whose PRF is 1000 pps, the two outputs will have the same
amplitude and the same frequency, namely, 100 eps. This, however, is
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the case; and if the boxcar-generator output voltages are analyzed under
the two conditions, they will be found to be identical.

For a linear receiving system there are at least two interesting
phenomena regarding the boxcar output worthy of discussion.

1. If the injected wave consists of several modulation frequencies, the
output frequencies are represented in the diagram in Fig. 2-12 by
the intersections of the lines at the modulation frequencies with the
array of 45° lines. There are no cross terms due to ‘‘beats”
between the input modulation frequencies. In other words, effects
produced on the output by input modulating frequencies can be
thought of as only the sum of the individual effects of the individual
modulating frequencies. This is one very cogent reason why a
linear receiving system is desirable.

2. If the input wave consists of a modulation term that is itself
modulated at a slow rate (e can be thought of as a very slow sinu-
soidal variable), the stow modulation frequency itself will not appear
in the output. Only sidebands will appear in the output fre-
quencies, separated from the main frequencies by the frequency of
the slow modulation. Here again the input frequencies are p and
p + u, where u is the modulation frequency of e. The output
frequencies are on y those given by the independent action of these
three input frequencies, and u itself will not appear in the output.

These remarks apply when the input modulating function has a
definite time phase. They do not apply when the injected wave is, for
example, receiver noise. This case will be discussed below.

In practice the receiving system is not quite linear, and cross terms
may be detected. The greatest nonlinearity appearing in the receiving
system just described is in the audio amplifier, whose harmonic genera-
tion, however, is very low. The entire receiving system can be made
sufficiently linear to reduce the effects of harmonic generation to negligible
values.

Behavior of the Receiving System in the Presence of Receiver Noise
Alone.—In the absence of a signal the audio output voltage appears to be
a function of both the gate length G and the PRF f,. Experiments have
been performed varying both of these parameters, and results are depicted
in Figs, 10-3 and 10-4.

The dependence of audio noise on the gate length @ is shown in Fig.
10-3. An experiment was performed in which the average value of audio
noise voltage in a frequency range of approximately 10 to 40 cps was
measured as a function of the gate length G. A receiver whose i-f band-
width was 2 Mc/sec was used. The experimental results are plotted in
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Fig. 10-3 along with a theoretical curve that will be deduced in the next
section. It can be seen that the noise output falls with increasing gate
length. For both cases (receiver AGC on or off) a good agreement is
obtained with the theoretical results.

The dependence of noise on the PRF is depicted in Fig. 10-4. Curve 1
indicates the total noise power in the channel from approximately 20 to
90 cps, and Curve 2 shows the total noise in the channel of 10 to 40 cps.
It can be seen that for both curves (normalized at a PRF of 400 pps)
the noise power is inversely proportional to the frequency at a sufficiently
high PRF, as predicted by the theory to be presented shortly. At a low
PRF observed deviations from this law are more severe for the 20- to
90-cps channel than for the lower-frequency audio channel. These
deviations are undoubtedly the result of the nonuniform spectrum of
noise itself, that is, to the term

o
in Eq. (7), where
1
0 = 7

Behavior of the Recewing System in the Presence of Receiver Noise and
Unmodulated Signals.—In this case the total output noise power is a
function of three quantities: the pulse length 7, the gate length G, and the
ratio of signal earrier to receiver noise power, which we may denote by 2.
The last two quantities are more precisely defined as follows:

1. The gate ength G may be written as nr and is approximately equal
to n/Bif B is the limiting system bandwidth up to the output of the
video system. This limitation may be in the i-f unit or in the video
system. The quantity B is ordinarily approximately equal to 1/7.
If the limitation is in the video system, however, B represents twice
the video-frequency bandwidth.

2. Let 2z be defined as the ratio of signal carrier to receiver noise power,
which is measured in the i-f unit after the i-f narrowing has taken
place.

Figure 10-5 shows the experimental results of noise output power as a
function of 2. The equipment used in obtaining these data was a linear
receiver, a linear detector, and a peak-value boxcar generator using the
AGC. The output noise power shown is measured in decibels relative
to its value for no signal carrier. The receiver i-f bandwidth was approxi-
mately 2 Mec/sec, and the pulse length was 1 usec. It will be noted that
two curves are shown, representing the results obtained for a narrow gate
(n = 1) and theé result for a wide gate (n = 10). Both of these curves



268 MODULATED PULSE TRAINS [Sec. 10-2

become identical for large values of z, as they should in a peak-value
device. That is, if the signal is large enough, the gate length is unim-
portant. For low values of 2z, a maximum is obtained whose position and
amplitude is a function of the gate length.

The slope of the curves for large values of z becomes —1, and the
essential reason for this is the receiver AGC, which causes the output
receiver noise power to be inversely proportional to the signal-carrier
input power. It will be noted, however, that for the values of z larger
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than 1000 (430 db), deviations from the inverse relationship were found
to occur. Three representative experimental conditions are shown in
Fig. 10-5.

1. Curve 1 shows an asymptotic approach of the output noise power
to a value of —33 db. This resulted from an oversight in the
design of the receiver gain control that was placed in the customary
position, that is, in the control-grid line of the first stages in the i-f
amplifier. The residual output noise was found to be contributed
by the late stages in the i-f amplifier, which were not connected to
the gain control. This defect was rectified by applying the gain-
control voltage to more stages in the receiver.

2. Curve 2 represents the results obtained on a trial with adequate
gain control but in which the output noise was observed to
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approach a constant value of —43 db. At the same time the out-
put was observed to consist almost entirely of a 26-cps component.
This was traced to a microphonic effect in the receiver. At
this level of operation, microphonic difficulties were encountered in
several places in the receiver, and extreme care had to be exercised
to reduce them. The principal sources of difficulties were the i-f
stages themselves.

3. Curve 3 represents the most satisfactory result obtained. Because
of occasional microphonic difficulties, it has not always been
reproducible, but it can be obtained under certain conditions.
Extreme care had to be taken with the receiver power supply to
achieve this result.

In any case excellent agreement was finally obtained between the
experimental results and the theoretically expected results presented in
the next section.

Detection of Modulated Signal in the Presence of Receiver Noise.—It
may be asked why this question has not been solved by the independent
analysis of signals and noise just given. The paradoxical nature of this
problem can be illustrated by showing that the desired solution cannot be
derived from the previous results.

It has been shown that the behavior of the system in the presence of a
signal alone is tndependent of the gate length G. It has also been shown
that the output noise power in a system in the absence of a signal is
reduced by a long gate. By simple reasoning, therefore, one would come
to the conclusion that a long receiver gate is desirable for a good signal-to-
noise ratio, hence good sensitivity for the detection of weak modulation.
This, however, is completely wrong; the actual result is that a short gate
is preferable for the best sensitivity. This illustration shows that each
case must be treated separately.

Fortunately the problem has been completely solved, with certain
restrictions, by M. C. Wang and G. E. Uhlenbeck.! The solution will be
given in Sec. 10-4. A simple formula may be given that expresses the
percentage of signal modulation necessary for various degrees of visibility
in receiver noise, namely,

e = 221% C(z2,G), (1)
where
¢ = the fractional audio modulation.
f- = PRF.
2 = signal-carrier-to-receiver-noise power ratio.
b = indicator reed noise bandwidth.

! See Appendix I in RL Report No. S5-10, May 16, 1944, entitled “Detection of
Propeller and Sambo Modulations,” J. L. Lawson, editor.
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C(z,G) = a correction term that is approximately unity for values of z
greater than 10. It is given explicitly in Sec. 10-4.
K = the ratio of audio signal power delivered to the reed to the
average noise power on the reed.

The constant K may be set to the smallest value for consistent visi-
bility, and under these conditions the above formula gives the correspond-
ing value of e. This will be the smallest fractional modulation that can
be detected.

+60
\\0

. AN

+20 \L

1. 1.0 usec gate, PRF =500 pps

0 O Experimental M
2. 1.0 usec gate, PRF = 1000 pps M

— O Experimental 3 ~J
@ Theoretical 1\\
| 3. 10.0 usec gate, PRF = 1000 pps i
& Experimental

ol L LU L] |

001 002 00400601 02 0406 1 2 4 6 10 20 40 60 100
: Fractional modulation € in per cent
F1a. 10-6.—Dependence of signal carrier power on modulation for X = 20,

/17

Ratio 2 of signal carrier power to noise power in db
/

d
/7o

Complete agreement with the preceding formula is obtained experi-
mentally, as is shown in Fig. 10-6. These curves are taken for K = 20,
where the signal is easily visible. For the three experimental curves the
following conditions apply:

1. PRF = 5000 cps, G = 1 usec, 7 = 1 pusec.

2. PRF = 1000 cps, G = 1 psec, 7 = 1 usec.

3. PRF = 1000 cps, G = 10 usec, 7 = 1 usec.

I

—— —-—-
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Along with Curve 2 are shown some theoretical points for comparison.
Excellent agreement is obtained both in the shape of the curve for low
values of signal carrier power z and in the absolute value. The aston-
ishing agreement in absolute value is perhaps fortuitous, but it should
be mentioned that there are mo arbitrary constants. The value of K

Jubettaisesfisssbagfrivaspait)

reasphujiirafestfloiibijavetic "_

Tnesibmnfisi[eespafoabeionst) §

K =40 K =80 K =160 K =320
F1a. 10-7.—Photographs of reed meters at various values of K.
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was measured experimentally by the reed deflections—with noise and
with the audio signal added. Therefore, it appears that Eq. (1) is
completely valid if the receiving system is properly designed and
constructed.

One striking thing about this is the extremely low values of e that can
be detected. One experimental point was obtained for ¢ = 10-%; z
itself was +56 db.
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14 1Ll 1 ...L_J..L._l .
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Pulse repetition frequency in pps
Fig. 10-8.—Variation of signal carrier power required for detectable modulation vs. PRF
for € = 1 per cent.

The smallest value of K that permits visibility of signals in noise is a
very controversial matter and takes on as many values as there are
observers. For this reason a signal was photographed for various values
of K; these photographs are reproduced in Fig. 10-7. For the smaller
values of K, fluctuations occur from one instant to the next, and so
several photographs are given that were taken at regular 15-sec intervals.
The modulation signal in all cases occurs at 29 cps. It is the opinion of
most observers that the photographs show up the signal slightly better
than does visual observation because of the absence of time fluctuations
in the photographs. Nevertheless, it will be seen that for K = 2.5,
it would be an extremely good (and undoubtedly optimistic) operator who
could point out the 29-cps signal without previous knowledge of its
existence.
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The effect of PRF upon visibility is illustrated in Fig. 10-8. 1In this
experiment e was fixed at a value of 1 per cent. As the repetition rate
was changed, z was adjusted to maintain K at a value of 20. It can be
seen that the product of z and the PRF is constant, as is predicted by the
general formula |Eq. (1)].

-2
3]
£ g -4
£2
o3 ol | | %
gE Modulation € |=100 %
8¢ J
w3 ~8 /
oo
w
[, S 1 I
04

06 1 2 4 6 10 20 40 6 100
Gate length G in usec

Fig. 10:9.—Variation of signal carrier power required for detectable modulation (K = 20)
vs. gate length G for ¢ = 100 per cent.

The loss in signal visibility accompanying the use of long gate lengths

is noticeable only for small values of z and therefore large values of e.

A curve of the necessary value of z required for consistent visibility

(K = 20) as a function of gate length G is shown in Fig. 10-9. The PRF

was set at 1000 cps for this run. It can be seen that an immediate drop

in signal visibility is encountered as the gate is made longer than 7.

However, this represents the one set of conditions in which z is most

nearly sensitive to G, namely, ¢ = 100 per cent. For most values of

Fy(®

F&—I Time —=
Fi1c. 10-10.—Boxcar output voltage.
signal intensity encountered it appears that a relatively wide gate could
he employed without serious loss in signal visibility. A wide gate,
however, is undesirable from an interference standpoint.

10-3. Theoretical Derivation of the Boxcar Spectrum of Noise Alone.
When there is receiver noise but no signal, the boxcar generator will
produce a step curve, where the heights of the steps vary in a random
fashion. This is shown diagrammatically in Fig. 10-10. There will be a
probability distribution P(y) dy that the height of one boxcar will lie
between y and y + dy. This distribution will depend on the probability
distribution of a noise deflection before the noise enters the boxcar gen-
erator, and it will depend on the gate length of the boxcar generator.
How to find P(y) will be discussed later in this section [see Eq. (12)].
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If it is known, the spectrum of the boxear output can be computed accord-
ing to the methods explained in Chap. 3. In fact in Sec. 3-4 the problem
of finding the spectrum of a series of pulses of random height but fixed
repetition interval has been considered, and the results obtained there
can be immediately adapted to find the boxcar spectrum. In Sec. 3-4
it was shown that for a series of pulses of the form

Fx(t) = 2 v (t — k6y), 2)

k

where the y. are the random heights and where F(t) represents the shape
of a single pulse of unit height, the spectrum is given by the expression

= 2 2 )2 — (a2 (L)Z - _ ﬁ.)
Gr() =5, BN {ly* — @) + 64 F =8 )p (3)
n=0
where
+ =
B = [ s ke @
is the Fourier transform of the pulse shape. For the boxcar spectrum,
— 6 +86,
Fl) = 1 for 5 <t< 5 (5)
0 otherwise,
so that
+,
B(f) /2d swite = L gin wfo ®)
= e iz = .
o e ”fsm-;r o

27
Since B(f) is zero for f = n/8,, the é-functions in Eq. (3) will not con-
tribute for n # 0 and can therefore be omitted. Only for n = 0 will
there be a contribution; this represents the d-c term of the spectrum.

The final result for the average power spectrum can therefore be written
in the form

in? _— =\ 2
Guip) = 2 i — @y + D ™
This result can be described by saying that besides the d-¢ term ()2, the
spectrum is the same as that of a single boxcar but that its intensity is
determined by the fluctuation of the hoxcar heights [yZ — (7).

To proceed further more must be known about the probability dis-
tribution P(y) of the boxcar heights. If a linear second detector is used,

/,
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the probability distribution of the noise voltage in the video stage, i.e.,
before the noise enters the boxcar generator, is given by!

Qx(r) dr = % ehﬁ" dr, (8)
where N? is the average noise power after the i-f amplifier and 7 is the
voltage. The cases of the short and of the long gate will be considered
separately.

Short Gate.—In the case of the short gate, G is smaller than or, at
most, equal to the correlation time of the video noise. Since this correla-
tion time is of the order of 1/B and B = 1/7, where 7 is the pulse length,
we shall assume that

G=r. ®

The distribution function P is then identical with @, and from Eq. (8)
it follows that

§=%"'N; F=N; P-@ = N2(1 - ’;’)- (10)

Long Gate.—Since the height y of the peak-value boxcar is equal to the
peak noise voltage in the gate G when the gate is long, the probability
distribution of the maximum noise voltage in G must be determined. To
do this exactly is a complicated problem, but an approximate answer can
be found by dividing G into n parts, each of length . Therefore?

G ~ nr. (1)

The noise voltages in these n parts may then be considered to be inde-
pendent of one another, and the probability of a maximum value y is
given by

P) = nQ() [ [) " dr Q(r)}"—l

2 y: _»
== € M —e w)L (12)
This gives *

18ee Eq. (3-71la), where r is denoted by L and the average noise power by o¢?;
N? has the same meaning as the symbol 2W used in Chap 7.

2 This definition of n should not be taken too literally. The correlation distance
in the video stage is only of the order of 7.  For a more precise comparison with experi-
ment, it would probably be better to introduce an adjustable constant here.

3 The notation is such that

al

(5) = s
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7 —‘g—’—er (—1)*“(’;) 5 (13)
k=1

- 1
y: = N? z a (14)

Numerical values of these functions for different values of n are given
in Table 10-1, and their behavior is shown in Fig. 10-11.

i
|

+3

Asymptotic
value

+2

+1

0

_1 —

%i‘

Noise power in db relative to the value for short gate
PF-9

-9

~10 L
1 2 3 4 5 6 7 8 910 12 15
Ratio 7 of gate length to pulse length
F1e. 10-11.——Dependence of noise power on gate length. Curve 1 is for a quadratic
detector without receiver AGC; Curve 2, a linear detector without receiver AGC; Curve 3,
2 guadratic detentor with receiver AGC; and Curve 4, a linear detector with receiver AGC.

Quadratic Detector—For the sake of completeness, the results for a
quadratic second detector are also given. The formulas used in this
latter case are as follows:
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Short gate:
§=N5  F=2N T - @ =N (15)
Long gate:
_ 1 — n\ 1
¥y = NZZE; y? = 2N‘z (— 1)kt (k) ey (16)
k=1 k=1
- 1
¥y — (@) =N! ZP a7
E=1

The dependence of the spectrum G(f) on the gate length G can be
computed in the following way: When no AGC is used, one determines
¥t — (7)*as a function of n (or of G); with AGC, the (7)? is always brought

TaBLE 10-1.—DEPENDENCE OF CERTAIN FUNCTIONS ON 7 FOR A LINEAR AND FOR A
QuabraTic DETECTOR
Linear Detector

7~ @) v~ @)
R
n L4
NV Nt
Value Db Value Db
1 1 1 1 0 1 0
2 1.29 1.5 0.875 —-0.57 0.524 —~2.81
3 1.46 1.83 0.786 —-1.04 0.370 —4 .32
4 1.57 2.08 0.726 —1.40 0.296 —-5.28
6 1.72 2.45 0.651 —~1.86 0.223 —6.52
8 1.82 2.72 0.600 -2.21 0.183 -7.87
11 1.92 3.02 0.553 —~2.58 0.150 —-8.24
15 2.02 3.32 0.512 —-2.90 0.124 —~9.05
Quadratic Detector
¥l - @ ¥ - ()2
¥ 7 Nt g)*
" N 3w
Value Db Value Db
1 1 1 1 0 1 0
2 1.50 1.75 1.25 +0.97 0.556 —2.56
3 1.83 2.36 1.36 +1.34 0.405 -3.93
4 2.08 2.88 1.42 +1.53 0.32 —4 .84
6 2.45 3.75 1.49 +1.73 0.248 —6.06
8 2.72 4.45 1.53 +1.84 0.207 —-6.84
11 3.02 5.34 1.56 +1.92 0.170 —-7.70
15 3.32 6.29 1.58 +1.99 0.144 —8.42
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down to the same level, so that then one determines [ — (5)?/ #H)?asa
function of G. For the comparison with experiment see Fig. 10-3.

10-4. Theoretical Derivation of Signal-modulation Threshold.—In
order to derive the minimum detectable amplitude modulation of the
pulse train, one first has to obtain the boxcar spectrum when a signal is
superimposed on the noise. The same procedure as in Sec. 3-4 can te
followed. We can represent the modulation frequency by p and tke
fractional modulation by e. Since in the averaging over all possible
boxcar heights the average values will be different in the successive gates
because of the modulation, one obtains for the boxcar spectrum, instead
of Eq. (7), the following expression:

M-

_ 2s8in? 7f0p |; 1
@spn(f) = 250 lim 1
o) = 00 Mo M {

1 M-
7 — @7 +‘2 p— ] (18)
0 k=0

k=

Let us assume that again a linear second detector is used and again divide
the discussion on the basis of gate length.

Short Gate.—The probability distribution for y, when a short gate is
used, will be the same as the probability distribution for the voltage in
the video stage, and this is known to be!

2y~ (2
P@) = Q@) = 3he " I (%S) (19)

where 82 is the signal power and Iy(z) is the Bessel function of zero order
and with purely imaginary argument. For the average values the
following is obtained:

g=4NF(—1,1;—S—Z>y

2 N (20)
yz = Q2 + Nz,

where F' denotes the confluent hypergeometric function.? To evaluate
the expressions in brackets in Eq. (18), it must be remembered that
because of the modulation, the signal strength S depends on k; in Eq. (20),
therefore, S is replaced by

S = So(1 + € sin 2rkOep). 1)

We shall assume € to be small. By developing in powers of € up to e?and
using Eqs. (18) and (20) one finds that the spectrum is

1See Eq. (7-13a); one obtains Eq. (19) by replacing in Eq. (7:13a) o + 82 by S?
and by writing again for the average noise power the symbol N2 instead of 2W.

28ee Eqs. (7-14a) and (7-14b); for a summary of the properties of the confluent

hypergeometric function F(a, b; z) and for some of the integrals, which are needed,
see Sec. 7-6.
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N?sin?xfo, {| 4 T, f2 , "
Gs-Hv(f) = 7]_72‘60—0 [[7—'_(1 +2) — F? + e“<? — 222" — PF

— 22%F, ”)] + -élv(—) [F + %J(zf" + QZZF”)] 8(f)
baear - ol | @)

In this equation F stands for F(—%, 1; —2) and the primes denote differ-
entiations with respect to z, where z is defined by

_ 8§ _ unmodulated signal power,
TON? noise power

(23)
In this approximation the spectrum (Fig. 10-12) consists of a continuous

part (given by the first term inside the braces) on which there is super-
imposed, besides the d-¢ portion (as given by the second term), the signal

R, v

(Y R M

i S W
¥

5 21, 34
Frequency
T1Gg. 10-12.—Frequency spectrum of a pulse, amplitude-modulated with frequency p.

spectrum, which has just the same frequencies as those given by Eq.
(2-29). It can easily be shown that, in fact, for N — 0, Eq. (22) gives
precisely the squares of the amplitudes of the Fourier development
|Eq. (2-27)]. On the other hand, for § — 0 or z — 0, Eq. (22) goes over
into the pure noise spectrum [Eqgs. (7) and (10)].

It should be emphasized that only when higher powers of ¢ are
neglected do no new discrete frequencies appear. Developing this
theory further, we should also get, for instance, the discrete frequencies
sf, + 2p; their intensities will be of the order of €* and will go to zero
when N —0.!

For further discussion of Eq. (22) it is well to neglect the effect of

! Kquation (22) and the following results can therefore be trusted only when
¢ is not too large, say less than 30 per cent.




280 MODULATED PULSE TRAINS [SEc. 10-4

the modulation of the signal on the continuous part and on the d-c part
of the spectrum, so that Eq. (21} simplifies to

N?sin? 7fOq €222k’

4 1 2
Gsn(f) = T onf0, {; 142 —F2+9—0F25(f) + B,

of — (of £ P)])- (24)

This can be checked experimentally in different ways. The depression of
the continuous noise spectrum caused by the presence of a signal carrier
can be determined. If an AGC receiver is used, this corresponds to
measuring the function

a4 -
Diyz1) =T

¢
T

where we have fixed the constant so that forz = 0, D, = 1. For large 2
we obtain

) (25)

DL(z,l)zﬁTl_O_%Jré_...); (@6)

1 . 2
24 — =)

for small z
Di(z1) = 1 —

B @7)

TasLk 10-2.—RELaTivE Noise OuTPUT AS A FUNCTION OF THE SIGNAL CARRIER
STRENGTH FOR A LINEAR OR A QUADRATIC DETECTOR

_ signal carrier power Dir(z,1) Dq(z,1)
= noise power (linear detector) (quadratic detector)

Value Db Value Db Value Db
Q - ® 1 0 1 0
0.30 - 5.22 0.964 - 0.16 0.948 - 0.24
0.75 — 1.24 0.858 — 0.66 0.816 — 0.88
1.0 0 0.795 - 1.00 0.750 -~ 1.25
1.4 1.46 0.703 -~ 1.52 0.660 - 1.81
2.0 3.01 0.553 - 2.29 0.555 — 2.56
3.0 4.77 0.425 - 3.36 0.438 — 3.58
4.0 6.02 0.374 — 4.28 0.360 — 4.4
6.0 7.78 0.263 - 5.79 0.266 - 5.76
8.0 9.03 0.205 — 6.89 0.210 — 6.78
13.0 11.14 0.133 - 8.78 0.138 — 8.62
30.0 14.77 0.0596 —12.25 0.0635 —11.98

100.0 20.0 0.0182 —17.41 0.0197 —17.06

1000 30.0 0.00183 —27.38 0.002 -27
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Numerical values of D.(z,1) are given in Table 10-2 and in Fig. 10-13.
Also included are the results for a quadratic detector. The formula is

then simply o
1+ 2z

T+27
Since for large z this reduces to 2/z, on a logarithmic plot D.(z,1) and
Dy(z,1) will become parallel and about 0.4 db apart.

0

Dqo(z,1) = (28)

\§§\
-1
N
\
. \§
Q'uad?tic d?tecto \
" Linear detector \Q

B \\

-6

D (z,1) in db relative to the value for zero signal

-8 _
-5 =4 ~3 -2 -1 0 +1 42 43 +4 +5 +6 <47 +8 +9 +10

z/lindb

F16. 10-13.—Noise reduction factor D (z,1) caused by unmodulated signal in a short gate.
2 = unmodulated signal power_

noise power
A more important result, which can be derived from Eq. (24), is the
determination of the minimum detectable modulation ew=. It may be
expected that the discrete frequency p (see Fig. 10-12) will be detected
when its power is a certain number, for example, Kux, times the power in




282 MODULATED PULSE TRAINS [SEC. 104

the noise of approximately the same frequency. How large K. has to
be can be determined only experimentally. How much noise power the
signal has to compete with depends on the bandwidth b of the final reed
detector. Let us define b in such a way that when the power response

1
o
u
=
[=3
a
wn
o
g
&
0
Frequency
F1ac. 10-14—Schematic reed-detector response curve; b = 3 db bandwidth, b = noise
bandwidth.

curve of the reed detector is so normalized that its maximum is unity the
area under the curve is equal to b (Fig. 10-14)., Therefore eun will be
determined by the equation

2 2072
et _ g b [é (1 +2 — Fz], 29)
Oy T
which can be written
i = 2B 0,0 ), (30)
with
?r (1+2) = LF?
Ci(z,1) = P (31)
For large z, C. approaches unity as
1 1
Culz,1) = 1 + v + 822 + H (32)
and for small z,
Culz1) ~ 2 =) (1 +3.4 - ) (33)
wz 2

In Table 10-3 and Fig. 10-15 are presented the numerical values for the
correction factor Cyi(z,1), together with the values for the quadratic
detector, where the formula is simply

14+ 22.
2z

Colz)1) = (34)




A4

Sec. 10-4] THEORETICAL DERIVATION OF THRESHOLD 283

Long Gate—When the gate is long, the formulas become rather com-
plicated. First there must be determined from Eq. (19) the probability
distribution of a peak value y in &; this can be done in a way analogous to
the derivation of Eq. (12) from Eq. (8). We find

ydy -UEE (28
P(y) dy :‘]/\”y I ( y )(1 — e N:)n_

2y dy

y?

¥ -¥ Yoy dy -ZES (23:1:)
TN (] — ¢ N2 a1, (22F). (35
(L= ™) |, §7 ¢ \az) @9

+ (-1

From this must be calculated the average values 7 and y?; then S must
again be replaced by Si [as given by Eq. (21)] and developed in powers

36

34

32

30

N
\ Quadratic detector
l-B \ } t
- Linear detector
16 \‘\
1-4 \\
N
12
e
10 )
-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8
z/lindb

Fia, 10-15—Correction factor C (2,1) as a function of 2, in a short gate. The minimum
detectable modulation is given by
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of e. An expression of the same general form as Eq. (22) is then obtained
for the spectrum, except that now the three parts (continuous spectrum,
d-¢ term, and signal spectrum) will depend on the gate length # cr G as
well as on 2. If one neglects the effect of signal modulation on the

TaABLE 10:3.—CORRECTION FACTORS FOR A LINEAR OR A QUaDRATIC DETECTOR

£ CL(z1) Calz,1)
Value Db (linear detector) |(quadratic detector)
0 - 00 -] [}
0.2 - 6.99 3.56 3.5
0.5 - 3.01 1.94 2.0
1.0 0 1.41 1.5
2.0 + 3.01 1.17 1.25
4.0 + 6.02 1.073 1.125
6.0 + 7.78 1.045 1.083
8.0 + 9.03 1.034 1.063
10.0 +10.0 1.026 1.050
12.0 +10.79 1.021 1.042
30.0 +14.77 1.0 1.0

continuous part and the d-c part of the spectrum, as in Eq. (24), the final
result can be written in the form

Gurn() = Y ZT0NL 4 ) — Bylem) + g, Biemd()

+ (LY g - o pl} 6o
where
n—1 B _Lz
Ai(zn) =1+ 2 +,z (—=1)Ht (n l l)l—(ﬁ e [¥1 (37)
=1

and

A\ fn—-1\ 1 3.
Bb(nrz) =e 20(_1)”- ( 1 )WF(Q! 1; ZTI)

1=
n—1
3 n—1)1 [¥¢D A o
+$2(—1)l+1( ! )lTﬁ_/; dz I_EF -éyl,x . (35)
=1

Of course for n = 1, Az becomes 1 + z and B, becomes
e~F (3, 1;2) = F(—%,1; —2),
so that Eq. (36) goes over into Eq. (24).
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Quadratic Detector.—When a quadratic detector is used, the same type
of equation is obtained:

Gera() = 2O ot o) — Bifem) + . Biami()
+ 2 (B s o 2 ), @)
where

n—1
1 n—1 1

1
[2z+1 4oz 2]6-1_;1,, (40)
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F1e. 10-16.—Noise reduction factor Dr(z,n) caused by unmodulated signal, with & linear
detector;
- unmodulated signal power _ gate length_

noise power ! pulse length
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and

Bo(z,n) = AL(zn). 41)

The results for a short gate follow again from this by making n = 1.
From Eq. (36) there can be drawn the same kind of conclusions as
from Eq. (24). The depression of the noise resulting from the presence

TaBLE 10-4.—DEPENDENCE OF NOISE D(2,n) ON THE SIGNAL CARRIER z AND THE
GaTe LENgTH G

The gate length is nr; numbers in parentheses are in decibels

z n =2 n =25 n =10 n =15
Linear Detector

[} 0.524 0.252 0.159 0.124

(— =) (~2.81) (—5.98) (—8.00) (—9.05)
0.5 0.513 0.259 0.162

(—3.01) (~2.90) (—5.86) (—7.90)
1 0.495 0.266 0.179 0.135

(0 ) (—~3.06) (—5.75) (—7.48) (—8.70)
2.5 0.409 0.282 0.222 0.185
(+3.98) (—3.88) (—5.49) (—6.55) (—-7.32)
4.0 0.332 0.271 0.223 0.195

(+6.02) (—4.79) (—5.67) (—6.52) (~7.10)
6.25 0.247 0.223 0.195

(+7.96) (—6.07) (—6.52) (=7.10)

Quadratic Detector

0 0.556 0.281 0.181 0.146

(— =) (—2.55) (—5.52) (—7.43) (—8.36)
0.5 Q.545 0.288 0.186 0.150

(—3.01) (—2.64) (—5.41) (—7.30) (—8.24)
1 0.518 0.301 0.199 0.158

(0 ) (—2.86) (—5.22) (=7.01) (—8.02)
1.4 0.494 0.311 0.212 0.170

(+1.46) (—3.06) (—5.08) (—6.74) (—=7.70)
2.0 0.454 0.318 0.231 0.191

(+3.01) (—3.43) (—4.98) (—6.37) (—7.20)
3.0 0.390 0.313 0.251 0.216

(+4.77) (—4.09) (—5.05) (—6.00) (—6.66)
4.0 0.337 0.294 0.254 0.228

(+6.02) (—4.73) (—5.32) (—5.95) (—6.42)
5.0 0.294 0.270 0.245 0.228

(+6.99) (—5.32) (—5.69) (—6.10) (—6.42)
6.5 0.245 0.235 0.223 0.215

(4+8.13) (—6.10) (—6.29) (—6.52) (—6.68)
10 0.173 0.172 0.170 0.169

(+-10) (—7.62) (~7.65) (=7.70) (~7.73)
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of the signal carrier is given by the function
1
— AL(zyn) - Bi(zln>
T

(; — 1) B:(2m)

which for n = 1 becomes equal to Eq. (25). For z = 0, D becomes
equal to the relative boxcar fluctuation for pure noise as derived from Eq.

Dio(zn) =

(42)

TaBLE 10-5.—CoRRECTION Facror C(z,n) FOR VARIOUS VALUES OF SIGNAL CARRIER 2
AND GaTE LENGTH G
The gate length is nr

z
n =2 n=235 n =10 ' n =15
Value Db l
Linear Detector
0 } — o ac o Y w0
0.2 — 6.99 6.37 15.74 33.77 53.78
1 0 1.87 3.03 4.76 6.2
4.0 + 6.02 1.12 1.24 1.41 1.58
30 +14.77 1 1 1 1
Quadratic Detector

0 — ® © o | oc ©
0.5 — 3.01 3.00 6.04 11.49 17.67
1 0 1.91 3.04 4.76 6.34
1.4 1.46 1.61 2.23 3.08 3.84
2.0 3.01 1.40 1.72 2.14 2.49
3.0 4.77 1.24 1.38 1.55 1.69
4.0 6.02 1.16 1.23 1.32 1.39
5.0 6.99 1.12 1.16 1.21 1.25
6.5 8.13 1.09 1.10 1.12 1.13
10 10 1.05 1.06 1.06 1.06
30 14.77 1 1 1 1

{13) (see Table 10-1 also); for z — =, D, becomes inversely proportional
;0 2. For-intermediate values of 2z, Dy (z,n) goes through a curious
maximum, which begins to appear when n > 2 and shifts to larger
values of z when n becomes larger (I'ig. 10-16). The minimum detectable
modulation can again be written in the form

2K ninb
z

2
€min

Cu(zn), (43)
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where
2 1.,
—Ailzn) — 5 B2(z,n)

CL(z,n) = T aB 2
L
(%)

Just as for the function D.(z,n), C(2,n) can be discussed only numerically.
The results can be found in Tables 10-4 and 10-5 and in Fig. 10-17.

(44)
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F1a. 10-17.—Correction factor C(z,n) as a function of z for a long gate and a linear detector.
The minimum detectable modulation is given by

21§0b Cr(z,n).

€min =

OTHER METHODS OF MODULATION

10-6. Propeller Modulation.—The preceding sections have shown how
a receiver and indicator can be made for the detection of modulated radar
pulses. One important example of their use is the detection of propeller
modulation. To understand the results to be presented, the character-
istic of propeller-modulation should be discussed briefly.

As the aircraft propeller rotates, the scattering cross section, or
echoing area, of the aircraft varies in a cyclical fashion. The funda-
mental frequency of this cyclical variation is not, in general, the propeller-
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shaft rotation frequency but the frequency with which the individual
blades pass a given point. This result is caused by the symmetry
properties of the propeller, that is, each blade is exactly like its neighbor.
Furthermore, the cyclical pattern is not generally sinusoidal but is
usually very complicated, exhibiting many harmonics of the fundamental
blade frequency. There may be 20 or 30 harmonics of sufficient ampli-

67
T ~<J
& 2 l o’@ 426 )</ Wy
AN o | %

66 A N, P \‘ A
2 '—r‘?lgj / ] \\ / \\ // \'\
2 65 IQ\ b= 5( P<>< (
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- 1\ N Tl N <
‘g qil"‘?)) & ,/>< ] >I<\‘ . h,
.'.E‘ 61 = \\ )\ ,..I ’ ’<J><
= ?‘@“‘\ g <N \\ sl 0-::‘

80 /é s NN \ ///: al

3
4.2
59 N\ N

0 10 20 30 40 50 60 70 80 90 100
Output frequencies in cps

Fia. 10-18.—Output frequencies from boxcar generator at PRF = 417 pps. The (s,r)
values for each line are given.

tude to be easily detectable, and these may eause extra responses at low

frequency in the reed indicator by their “beats” with the PRF and its

harmonics. Because of the changes in audio spectrum accompanying

changes in either the PRF or fundamental blade frequency, however,

the harmonic responses can be recognized. The method by which this

can be done will be described below.

It is of interest to construct a sample nomograph that describes the
output audio frequencies produced by a given modulating propeller-
blade frequency f. interacting with the PRF .. The chart shown in Fig.
10-18 was constructed for only a very limited region, since it will be used
to explain some particular results; the range of frequencies can be
extended if needed. Such a chart is valid for only one value of f,.
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(b) Front aspect at 12 nautical miles

(a) Front aspect at 12 nautical miles Modulation frequency
Modulation frequenc.y (8,7) Observed Theoretical VSI';LS
Observed Theoretical values cps eps
cps cps | 28.0 28.0 1,7
28.5 28.0 1,7) 32 31.8 0,3
32 31.8 0.3) 36 36 (1,6)
36 36 (1,6) 44 43.5 (3,19)
44 43.5 (3,19) 55.5 56 (2,14)
64 63.65 0,1) 64 63.65 (0,1)
71.5 71.2 (2,12) 72 71.2 (2,12)
84 84 (3,21) 85 84 (3,21)

(d) Rear aspect at 10 nautical miles

(¢) Rear aspect at 10 nautical miles Modulation frequency
Modulation frequency ) Observed Theoretical ‘,Sl":ls
Observed Theoretical values cps cps
cps cps 30.5 30.3 0,%
30 30.2 (X)) 41 40.5 (3,20)
43 43.2 (3,20) 47 47.2 (2,13)
55 55 (1,6) 54 54 (1,6)
60.5 60.4 0,1) 61 60.55 (0,1)
66 66 (1,8) 68 67 (1.8)
72 72 (2,15) 74 74 (2,15)
78.5 78 (3,22) 81 81 (3,22)

F1a. 10-19.—Four sample reed-meter displays showing the a-f spectrum of the echo of a
small two-engined training aircraft (SNC) in flight. The observed frequencies can be
checked by comparing with Fig. 10-2. The theoretical frequencies are those determined
using Fig. 10-18 and the listed (s,r) values. Figure 10-18 is applicable, since the PRF was
417 cps,
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In Fig. 1018, f, is 417 cps, the abscissa represents the output audio
frequencies from 0 to 100 cps, and the ordinate, the values of f,. between
59 and 67 cps. The output frequencies are obtained by the intersections
of a horizontal line whose ordinate is the desired blade frequency with the
array of oblique lines shown. Each such line is characterized by two
indices s and r. These indices define the harmonies of the PRF, which
interacts with the rth harmonic of f. to produce the particular a-f com-
ponent represented by the intersection. This nomograph is similar to
the one shown in Fig. 2-12, where output frequencies for a single modu-
lating frequency are given.

In Fig. 10-18 it can be seen that for a given fractional change in the
blade frequency the high harmonics of f. and the PRF produce audio
components that change frequency with relative rapidity. It is because
of this fact that these components can be properly identified. Further-
more a given a-f spectrum can be ““fitted”’ to a chart similar to that shown
in Fig. 10-18, and a very precise value for f, can be obtained. This
procedure, of course, assumes a known value for the PRF.

Results of actual flight trials with an SNC type aircraft are shown in
Fig. 10-19. These photographs show the responses obtained on a vibrat-
ing reed assembly similar to that shown in Fig. 10-2 except for the absence
of the lowest-frequency reed meter.

A host of responses is obtained. The conditions for these tests are
those for which the nomograph of Fig. 10-18 was constructed, namely, a
PRF of 417 cps and a blade frequency of approximately 64 cps. Since
the photographs are not very clear, a table is presented under each picture
that lists the observed audio frequencies together with the ‘fitted”
theoretical frequencies and the indices (s,r) that are assumed to be
responsible for the indication. It will be noticed that a small 32-cps
response is listed for the indices (0,3). This response is caused by a
slight asymmetry in the two-bladed SNC propeller, which produces a
term at the shaft rotation frequency, that is, one-half the blade frequency.
It will also be noticed that responses of appreciable magnitude are
observed from the twenty-first harmonie of the blade frequency.
Furthermore, many of the high-harmonic responses are stronger than
that due to the fundamental itself.

These strong harmonic responses are not at all surprising when one
examines the radar intensity pattern resulting from propeller rotation,
obtained for a fixed aspect of the aircraft. Such a pattern is shown in
Fig. 10-20, where the ordinate represents the amplitude of returned echo
and the abscissa represents time. The time required for 90° of shaft
rotation of the four-blade propeller of the B-26 medium bomber used in
this test is the time between the successive prominent minima. This
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pattern is the filtered boxcar output voltage of the receiver using a PRF
of 10,000 cps to obtain the necessary detail.

The complex shape of the curve shows the presence of high harmonics
of the blade frequency. The harmonic analysis of the propeller-modula-
tion pattern of Fig. 10-20a is given in Fig. 10-20b. This analysis, which
includes harmonics of the blade frequency up to the tenth, was recorded
with a swept-frequency audio analyzer.! The harmonics of the blade

(@) ®)
Fig. 10:20.—(a) Propeller modulation pattern. (b) Corresponding harmonic analysis.
Harmonics of the blade frequency are numbered.

frequency are numbered, and the percentage of modulation in each
harmonic is recorded on a logarithmic scale. The ninth harmonic is
nearly 10 per cent; the tenth, nearly 7 per cent, etc. For more complete
information concerning propeller-modulation studies, the reader is
referred to the original reports already cited.

10-6. Theoretical Analysis of a Pulse-width Modulation System.—
Besides the a-m pulse trains, which have been treated in the previous
sections, there are many other types of pulse modulation, some of which
have been described in Sec. 2-8. The analysis of each pulse-modulation
system will follow the same general lines as the analysis given in Secs.
10-3 and 10-4 of the receiving system for a-m pulses. However, in each
case, the theory must be developed separately, since it will depend
essentially on the number and type of nonlinear elements in the receiver.

As a second example, we shall give a short account of the analysis of a
pulse-width modulation system, in which a slécer (¢f. Sec. 2:8) is used as a

'R. M. Ashby, F. W. Martin, and J. L. Lawson, ‘Modulation of Radar Signals
from Airplanes,” RL Report No. 914, Mar. 28, 1946,
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noise-suppressing device.! The action of the slicer on a series of pulses
with and without noise is shown in Fig. 10-21. Clearly, if the carrier
voltage and the slicing level are both high compared to the noise, then the
output of the slicer will be a series of rectangular pulses that are approxi-

@ Detector output without noise
b Detector output with noise
¢ Slicing level
d Rectangular pulse after slicing
Fi1g. 10-21.—The effect of slicing a series of pulses with and without noise.

mately at the same position as the original signal pulses. The only
effects of the noise will be the small and random shifts of the two edges
of the pulse, which are indicated by « and 8 in Kig. 10-21.

Consider now a series of signal pulses of which the width is modulated
in a sinusoidal fashion. In the absence of noise the output of the slicer
will be a train of rectangular pulses represented by

F.@) = 2 A4,
E
where
A(t) - 1 fOI'jeo—‘i’Tj <1 <j60+';‘1'i,
! 0 otherwise,

7; = 7(1 + € cos 27pjO,), (45)

and O, is the repetition period, p the modulation frequency, and e the
fractional modulation of the pulse length r. Assuming commensur-
ability of p and the PRF f, = 1/6,, one finds, by a straightforward
Fourier analysis,

1 Parts of this analysis were first given by Z. Jelonek in some unpublished British
reports.
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F (t) - 2f,- 2 — Bxo 2 — 810 JI[TTE(ZP + kfr)]
T 2 2 I + K,
k=01=0

{81, even sin w7 (Ip + kf;) + €61, 0aa cO8 w7 (Ip + kf,)] cos 2x(Ip + kf.)t

+ W [, even Sin 77 (Ip — kf;) + 181, 0aa cos mr(lp — Kkf))]
cos 2r(lp — kf)t}, (46)
where J(2) is the Bessel function of order ; the symbol 8;, evea is defined by

5 1 for [ even,
b oven 0 for [ odd,

and 6, oaa = 1 — 8y, eveu. All the harmonics of f, and p and their com-
bination frequencies are therefore present in the spectrum of the signal.

When noise is present, the edges of the jth pulse are shifted by the
random amounts o; and 8;. By an analysis similar to the analysis used
in Examples 3 and 4 of Sec. 3-4, the power spectrum of signal and noise
can be written in the form

N N
- 2
Gs+N(f)‘= Nllinw m [z (lai]* — la;®) + ’2 d;'ez"'”e*{ ]r (47)
i=0 i=0

where
@ = e 2 hntB) — grrif (hri—ay) (48)

In order to obtain the ensemble averages a, and la—,-|2 the probability dis-
tribution of the o; and 8, must be found. In Eq. (47), the assumption
has been made that the &’s and 8’s of different pulses and, therefore, the
different a;'s are independent of each other. This, of course, will always
be the case, since 8, is always large compared with 1/B if B is the i-f
bandwidth. For simplicity, we shall assume in addition that the o’s and
B’s of one pulse are independent of each other. This implies that Br > 1,
so that the original signal pulse is only slightly deformed by the i-f
amplifier.

The probability distribution P(a) de follows immediately from the
probability distribution of signal plus noise [¢f. Eq. (7-13)]:

rdr 53¢ rS
= Tor ~aw w
W(r) dr ke I, (W) (49)
by putiing r = h, S = h + atgf,, dr = da tgh,, where h is the slicing level
and t46, is the slope of the signal pulse after the i-f amplifier and at the
height h. Replacing Eq. (49) with the Gaussian approximation
lef Eq. (7-13a)], which is allowed, since S2 3> 2W, one finds

do =

P(a) da = e (50)

2xa?

3
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where ¢ = W/tg?0,. In the same way one finds for 8 a Gaussian dis-
tribution with the variance o2 = W /tg%0,.

The average values indicated in Eq. (47) can now be evaluated. The
results are

a, = exp (—nifr; — 2x%f%%) — exp (+wtfr;, — 2n%fi0}), .
la? = 2 — 2 cos 2xfr; exp | —2r%f2(c? + o2)). (51)

Substitution of these results in the first sum in Eq. (47) leads to the
continuous part of the power spectrum. We will neglect in this part, as
we did in Sec. 10-4, the effect of the modulation of the signal. The
continuous spectrum becomes therefore

1
25770,

— 1
2 _ 1512y = — AT 0\2 _ p—4wlfl0?

(aP — 11" = g, (2 — € emimre) (52)

The substitution of Eq. (51) in the second sum of Eq. (47) leads to the

discrete spectrum due to the signal. Using the expression (45) for 7; and

developing in powers of ¢ up to €, one obtains for the discrete spectrum,

when p < f./2,

©
".1—‘ e~im i L im0 D cog Lirfre— 20 Mot 8 — 8.
2?0}

s=0

2.2

F g e 4 et 4 2 cos Qufretreee) z 5(f — sf,  p).
0

s=0

(53)

If there is no noise, ¢! = ¢} = 0, and Eq. (53) goes over into the power
spectrum of the signal alone, which, provided the same powers of € are
kept, agrees with the power spectrum that follows from Eq. (46).

According to the power criterion (¢f. Sec. 7-3), the detectability of the
modulation e depends on the ratio of the power of the signal peak at the
frequency p to the power of the continuous noise spectrum with which the
signal has to compete. Suppose that a narrow audio filter of width b is
used; it follows from Eq. (53) that the power of the signal peak at the
frequency p is

2.2
7 egfz [6_4,-21,2,,,2 4 e—irtpax + 2 cos 2.”.p.re—2r2p7(v:?+nz)]

whereas it follows from Eq. (52) that the power of the continuous noise
spectrum is

2b{r . (2 — e—iviple? __ 6_4,11,2,._2).
TP
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The minimum detectable modulation is therefore given by

4kb 2 — exp (—4x’p%e}) — exp (—4x’p’})
miripY, exp (—4n’pi?) 4 exp (—4n*p2i) + 2 cos 2rpr exp
[—27°p*at + o})], (54a)

where k is a constant, which has to be determined experimentally, just as
in Sec. 10-2.

For further discussion we shall assume that the i-f amplifier (band-
width B) deforms the pulses in a symmetrical fashion, so thate, = ¢ = 0.
Assume further that pe and even pr are much smaller than unity. Then
Eq. (54a) reduces to

2 =
€min =

2 Ak 8ba®

€min — fT
T

(54b)

For a Gaussian pulse and a Gaussian i-f pass band, ¢% and = can be calcu-
lated exactly, and Eq. (54b) becomes

So \?
b1 h
2 o~ T
€min — k 4f1 2 | _%, ’ (550)
og 4
where 8, is the pulse amplitude before the i-f amplifier, h is the height of
the slicing level, and z = 82/2W. For the case of a square pulse and a
Gaussian i-f pass band, one obtains in the same way
1.78b 1
2 ~ . ——_ p—A1—(2h/80)]2
€min — k fr oy € i (55b)

where £ = Brg is the product of the i-f bandwidth and the original pulse
length. In both Egs. (55e) and (55b) z is assumed to be large compared
with unity. For a Gaussian pulse €2, is independent of x, whereas for
a square pulse €2, goes to zero when 2 — «. This difference can easily
be understood. The influence of the noise decreases for increasing slope
of the pulse at the slicing level. For a square pulse the slope increases
indefinitely when r — « ; whereas for the Gaussian pulse the slope will,
of course, remain finite.




CHAPTER 11
THRESHOLD PULSED SIGNALS IN CLUTTER

INTRODUCTION

11-1. Comparison between Clutter and Noise.—In many ways noise
and “clutter’’ are similar. In the following pages are discussed some of
the similarities as well as the differences between them. The similarities
have given rise to the argument that both types of interference have
similar effects, but this conclusion is not a valid one.

The frequency spectrum of receiver noise is essentially uniform at the
input of the i-f amplifier; the frequency spectrum of the clutter is influ-
enced by the transmitted pulse itself. For practical purposes all fre-
quencies in the neighborhood of the transmitter frequency are, on the
average, equally reflected by clutter. Hence the long-time-average
power spectrum of the clutter will be just that of the transmitted pulse,
that is, usually a(sin? z/x?) spectrum, where z is the frequency deviation
from the center radio frequency. Thus noise and clutter would be
expected to behave differently with respect, for example, to a variation
in receiver bandwidth.

The amplitude probability distributions of clutter and noise at the
receiver second detector differ only with respect to a multiplicative con-
stant. This property comes about because both phenomena are random;
they are produced by the random interaction of many small processes.
The average values of the amplitudes at the second detector of noise and
clutter behave differently, however. In noise the average value is
constant in time, but for clutter it varies in time, i.e., radar range, not
only with geometrical factors but also with the different scattering
properties of the illuminated medium. This varying average amplitude
of clutter causes much difficulty since, without special circuits, saturation
in the receiver will not be avoided in regions of strong clutter return.
For receiver noise, however, a setting of the receiver gain control can be
found where saturation by receiver noise can be easily avoided. In
addition to the total variation in clutter amplitude, possibly requiring
some form of receiver AGC for satisfactory operation, the rate at which
this clutter-amplitude variation occurs, i.e., as the range changes, will be
important. This rate of change will determine the speed with which the
AGC must act to be effective.

One other important property of clutter is the rate at which the clutter

297
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configuration changes in time. If the radar return from a single trans-
mitted pulse is examined, a complicated time pattern will be obtained that
contains all frequencies up to very high ones, a pattern that is similar,
except for spectrum differences, to receiver noise. This pattern, or
configuration, will remain essentially unchanged, however, if a second
pulse is used shortly afterward. The configuration is therefore relatively
stable in time, perhaps for as long as a second, although its shape may be
complicated. The reason for this stability is that the returned signal
depends on the physical positions of the reflecting objects. Changes in
relative position and therefore in the signal amplitude occur compara-
tively slowly. The consequences of this fact will be discussed more
fully in Secs. 11-9 and 11-10, where it will be shown how this phenomenon
can be used to reduce the effects of clutter.

11.2. Threshold Signal in the Absence of Saturation.—In the absence
of saturation, problems connected with the perception of signals in clutter
are similar to signal-perception problems in noise. Even though clutter
is relatively stable, the configurational changes are usually sufficiently
rapid to be visually somewhat similar to normal noise fluctuations.
Clutter has a somewhat coarser and more grainy appearance than ordi-
nary noise, however. Nevertheless, as with receiver noise, the desired
signal must be of the order of magnitude of the average clutter (plus
noise) power to be recognizable. These remarks apply exclusively to
clutter in which the configurational changes are relatively rapid, for
example, sea return and rainstorm echoes. They do not apply, however,
to ground return, where the clutter configuration is virtually stable. In
the case of ground clutter, a satisfactory criterion for signal perception
is all but impossible. A small desired target may produce an echo large
enough to be clearly seen, but it will not, in general, be recognized as the
desired target because of confusion with other similar echoes in the
neighborhood. Consideration of ground clutter will for this reason be
reserved for Sec. 11-9, where it will be shown that the desired signal may
have properties differing from those of clutter, for example, velocity
properties.

The problem posed by the perception of a desired signal in fluctuating
clutter, for example, rainstorm clutter, is complicated by several factors.
First, unlike the case for receiver noise, the average amplitude of clutter
return depends not only upon transmitted pulse power but upon the
total volume of rainstorm illuminated at any given instant by the pulse.
In other words, at any given instant the receiver input is collecting from a
region of rainstorm reflectors power that is as large as the packet of r-f
energy sent out by the transmitter in one-half the pulse length. There-
fore an increase in transmitted pulse length by a factor of a produces an
a-fold increase in the scattering cross section for the clutter., For the
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perception in clutter of a desired discrete target, one whose eross section
or echoing area is independent of the pulse length, short pulses should be
used. This argument makes it clear that the signal threshold power in
clutter should be directly proportional to the pulse length, provided, of
course, that the receiver i-f bandwidth is as wide as or wider than optimum
for the pulse length (see Chap. 8) and that the intensity of clutter is
sufficient to override all receiver noise.

This reasoning was confirmed by an experiment in which the output
pulse of a signal generator was introduced into the r-f receiving section of a
radar system. The power of the pulse was known and variable, and its
phase adjustable so that it could be made to coincide with the radar
echoes of a local rainstorm. When the lengths of the radar pulse and of
the signal generator pulse were changed from 5 to 0.05 sec, the observed
threshold signal was 18 db less as compared with the theoretical 20-db
difference. This proportionality between pulse length and signal thres-
hold in clutter can also be qualitatively confirmed by studying the effect
of antenna beamwidth on the perception of discrete targets in clutter.
One would expect that the cross section of clutter extended in three
dimensions would be proportional to the antenna-beam solid angle, since
the illuminated part of the clutter is proportional to it. For clutter on a
plane surface, such as sea return, the clutter cross section is proportional
to the width of the antenna beam. No exact quantitative information is
available on this point, but it is a well-known fact that narrow-beam,
high-discrimination radar sets are much less affected by extended clutter
than are radar sets having an equivalent wavelength but a broad antenna-
beam pattern. One of the complicating features in the quantitative
determination of the effect of the beamwidth is the difficulty of securing
clutter that is essentially uniform over the large areas likely to be illumi-
nated by a broad radar beam. Furthermore, when the discrimination of
the radar set is very high, that is, when it has very narrow beamwidth and
small pulse length, the clutter itself is no longer uniform but generally
breaks up into a number of distinct reflecting volumes. This character-
istic is particularly true of sea clutter, where the discrimination of the set
may be made high enough to resolve individual reflecting sea waves.
When this happens, the experimental determination of the minimum
detectable signal is difficult, not because of insufficient signal amplitude
or clutter fluctuation but because of confusion with other clutter peaks
that appear to be discrete. Nevertheless, for the perception of a discrete
signal in clutter, high-discrimination radar sets have proved much more
useful than low-discrimination sets.

One point should be emphasized: As long as there is sufficient radar
power for the clutter echoes to be much stronger than receiver noise, the
signal whreshold power in clutter is independent of transmitted power but
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vartes directly with pulse length. This situation is markedly different
from the problem of signal threshold in receiver noise (see Chap. 8).

For a given pulse length, the effect on signal threshold power in
clutter of the various receiver parameters, such as i-f bandwidth, video
bandwidth, presentation sweep speed, etc., could be investigated. These
variables would be found to have a somewhat different effect from that
observed in the presence of receiver noise because, as was shown in the
preceding section, the spectrum of clutter, as viewed in the i-f amplifier,
differs from that of receiver noise. For the same returned power the
clutter spectrum is, in fact, the same as that of the desired discrete echo,
except that all components of the spectrum of clutter are, in general,
independent or noncoherent; for the discrete echo, the various com-
ponents are coherently related. Since the spectra of the signal and
clutter are the same, it might be argued that changes of i-f or video band-
widths would have no effect on the signal threshold power. Because of
the difference in coherence, however, this is not true. For very narrow
i-f bandwidths, it is the amplitude of the signal response and the power of
the clutter response that will be proportional to bandwidth. This
situation is analogous to that for receiver noise; obviously, therefore, the
signal threshold power will vary inversely with the i-f bandwidth in this
region. For wide i-f bandwidths the situation is different, however.
The responses to both clutter and signal approach asymptotic values,
and the signal threshold power becomes independent of i-f bandwidth.
Thus there is no optimum i-f bandwidth, although a receiver is usually
required whose bandwidth is nearly optimum for noise, since both types
of interference are usually encountered. No good experimental informa-
tion is available on this point, however, although rough experiments have
shown that the argument is probably correct.

As for noise, video bandwidth has a less pronounced effect than if
bandwidth on signal threshold in clutter. For receiver noise at optimum
i-f bandwidth the signal threshold power is increased when the video pass
band is narrowed from either the high side (low-pass filter) or the low side
(high-pass filter or differentiator). This characteristic is not necessarily
true of clutter. Because of the difference in coherence between signal
and clutter, a low-pass video filter increases the threshold signal. The
video clutter components are essentially independent; hence for small
video bandwidths the average amplitude of clutter response is propor-
tional to the square root of video bandwidth, whereas the amplitude of
signal response 1s directly proportional to the video bandwidth. In
contrast to this situation, Middleton and Sutro! have shown that when a

1D, Middleton and P. J. Sutro, ‘“Analysis of a Possible A/J System Against
Window,” RRL Report No. 411-128, Dec. 9, 1944.
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high-pass filter is employed, an improvement in signal perception is to be
expected, especially when the i-f bandwidth is increased. The reason
for this improvement may be seen by considering the action of a high-pass
filter or differentiator. From a wide-band i-f amplifier a pulse from the
desired discrete signal will have relatively steep edges. These sharp
transient voltages will be passed through the differentiator and will
therefore act much like shortened pulses. For each signal pulse, two
shortened pulses will be manufactured, one positive in sign and the other
negative. Were it not for the extra negative pulse, which contributes a
factor of 2 to clutter fluctuations, the signal threshold would be just the
same after differentiation as for the case in which a short transmitted
pulse is used. If sufficiently rapid differentiation is provided, therefore,
a net improvement in signal perception will occur. It should be empha-
sized, however, that a greater improvement could be obtained by using a
short transmitted pulse, since this would avoid the extra negative pulse
produced by the differentiator.

Attempts to prove experimentally the desirable effect of the differ-
entiator have usually been disappointing, partly because of the unavoid-
able low-pass filter characteristics of the human eye and brain pointed
out in Sec. 8-7 and partly because of the lack of contrast between highly
differentiated signals. The low-pass characteristics of the eye appear to
override the action of any differentiator and therefore reduce the effec-
tiveness of the latter. This is true, of course, only where the presentation
sweep speed is slow enough to make the ‘““eye bandwidth’ important.
This condition, however, is universally met in any presentation that is
being used for long-range search, the one function for which the avoidance
of clutter is so important. These difficulties will be clearly evident from
the results presented in Sec. 11-8.

One important point should be noted regarding the effect of a low-pass
filter. It might be argued that because of the low-pass effect of the
human eye and brain, an additional low-pass filter located in the video
system should not be serious. This argument is true if there is no non-
linearity between the two filters—a condition that rarely exists.
Although the screen of the cathode-ray tube used for intensity-modulated
presentation is nonlinear, nonlinearity of this type is not usually of
importance. The most troublesome effect of a narrow video system
results from the video-limiting action necessary for intensity-modulated
displays. The average value of clutter (d-c term) causes limiting and
consequent loss of all signals long before clutter fluctuations are large
enough to mask a desired echo. This situation is also true of receiver
noise, but here a blocking condenser can eliminate the d-c term. The
variable value of the d-c term makes this solution impossible for clutter.
A differentiator can be used, however, to remove the d-c term and its
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sidebands, which fluctuate at a low frequency; this explains why radar
operators usually report an improvement in operation when they use a
video-differentiating circuit.

It should now be clear that the use of fast sweeps or expanded-range
oscilloscopes such as the R-scope (see Sec. 2:6) will improve signal per-
ception in clutter. This device, enabling the eye to perceive more of the
fine signal detail, i.e., the higher video frequencies, will constitute a video
filter with a higher h-f cutoff. Experiments have qualitatively con-
firmed this.

No good data have been gathered showing the effects of signal-
presentation time and over-all system integration on signal threshold
power in clutter. It seems reasonable, however, to suppose that the
effects are similar to those for receiver noise (see Chap. 8); qualitative
observation is in agreement with this supposition.

11-3. Threshold Signals in the Presence of Saturation.—Signal
perception in clutter is greatly reduced if saturation exists in the receiver.
In the presence of saturation the response of the receiver to incremental
input signals is essentially zero. Saturation is most likely to occur in the
video system as a result of limiting; but as was pointed out in the pre-
ceding section, its occurrence can be largely avoided by using a high-pass
filter or differentiator between the second detector and video system.
Even with such a device, however, saturation may still occur in the i-f
amplifier itself. The i-f amplifier tubes may be driven into an overload
region by the clutter signal. An obvious (but in practice inadequate)
palliative is the use of larger tubes; the customary device used to alleviate
this overload effect is an AGC, which regulates the gain of the receiver in
accordance with the total voltage appearing in the output of the second
detector. The possibility of sudden changes in clutter amplitude makes
it imperative that this AGC have a rapid action, but its action must not
be so rapid that it causes serious distortion of discrete echoes. This
form of gain control has been referred to as instanianeous automatic gain
control, or TAGC, to distinguish it from the more conventional AGC
operated from a third detector and having a relatively slow response (see
Sec. 2-7). More will be said about practical circuits and optimum adjust-
ment for the TAGC in the next section.

The major cause of signal loss in clutter is saturation in either the video
or i-f amplifier and not any of the causes mentioned in the preceding
section. Saturation is in many ways extremely unsatisfactory, since
virtually no quantitative information can be given on its effects. The
conditions for saturation in either the i-f amplifier or video system vary
enormously from one receiver design to the next; they depend upon many
factors beyond the scope of this discussion, such as tube characteristics
and stability. About all that can be said is that once saturation occurs.
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the desired signals are completely lost. Before saturation occurs, signal
perception will depend upon the factors discussed in the preceding
secfion.

METHODS FOR THE REDUCTION OF CLUTTER SATURATION

There are in current use two general means of reducing i-f amplifier
saturation in the presence of clutter. The first is to use IAGC to keep
the average clutter amplitude at the second detector essentially constant.
"The second is to use an i-f amplifier whose response is logarithmie, that s,
whose output i-f voltages are proportional to the logarithm of the input
i-f voltages. Both schemes require additional circuits to alleviate
the effects of video saturation. When the clutter is essentially uniform
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F1a. 11:1.— An TAGC circuit, which protects the last two i-f stages.

at the various azimuths and monotonic in range, a third method has
proved useful, that is, the use of a time-varied gain control. This device
generates a simple time-dependent wave shape that varies the gain of
the receiver in such a way as to compensate for spatial variations in
clutter amplitude.

11-4. Instantaneous AGC.—DBell and Ashbrook! have developed an
IAGC cireuit in which the average negative d-c component of the rectified
second detector voltage is applied to the control grid of the next-to-the-
last i-f amplitier tube. To maintain low impedance from the grid of
the i-f tube to ground, this connection is made through a cathode follower.
The circuit is then similar to that shown in Fig. 11-1.  The circuit is
operated in the following way: As soon as a strong video signal appears
at the second detector, whether produced by clutter or by the desired

'P. R. Bell and F. Ashbrook, ““Some General Microwave Anti-jam Design Con-
siderations and Performance of a Special Receiver,” RL Report No. S-8, Feb. 24, 1944.
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echo, the i-f amplifier acquires a bias voltage that increases until the
video voltage at the second detector is reduced to some equilibrium value.
This equilibrium value is such that it equals the bias voltage on the i-f
amplifier needed to reduce the gain of the latter to a point where the
incoming signal or clutter voltage produces the indicated output equilib-
rium voltage. This circuit is a standard degenerative loop used for
AGC whose novel feature is the speed of respcnse. The tightness of
control is the ratio of the output amplitude change to the input amplitude
change.

An TAGC circuit of this type has two drawbacks: (1) The tightness of
control is usually not sufficient to prevent video saturation; (2) the total
dynamic range of input voltages that can be handled before saturation of
preceding stages occurs is limited. The second disadvantage can be
overcome by adding another TAGC “ring,” as shown in Fig. 11-2, com-
plete with another second detector operating from an earlier stage. The
addition of the second ring aids considerably in the handling of input
voltages varying over wide dynamic limits; but because of relatively
loose control, it does not permit the operation of the video system with
the small limit level desirable for the rejection of c-w interference (see
Chap. 12).

A new type of IAGC circuit with almost ideal characteristics has been
developed by Josephson, Lawson, Linford, and Palmer.! This circuit
makes possible extremely tight control, extreme speed of response without
instability, and economy of components. A single degenerative ring
is shown schematically in Fig. 11-3. Each ring is applied around only
one i-f stage to avoid possible complications arising from phase shift in
the i-f amplifier. This phase shift is troublesome if rapid response is
required, since oscillations may develop at certain frequencies. Tests
have shown that with the ordinary design of i-f amplifiers, protective
bias should be applied to each of the last few amplifier stages and not to
alternate stages if all amplifier tubes are to be operated in the optimum
part of their characteristics. Failure to do this will cause an unnecessary
loss in pulse gain.

Each ring consists of a double-triode tube and associated elements;
one section of the tube acts as a diode rectifier, the other as a “bootstrap”
cathode-follower amplifier, so named because of the feedback tkrough
the diode rectifier from cathode to grid. With the switch closed, the
total voltage appearing on the diode load resistor B3 is the sum of the
rectified i-f voltage and the cathode potential of tube Vg, the latter being
reduced by a small factor by the potential divider B, and R;. It can be

1V. Josephson, J. L. Lawson, L. B. Linford, and C. H, Palmer, Jr., “Anticlutter
Circuits for AEW,” RL Report No., 5-52, Aug. 1, 1945,
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shown that the actual voltage appearing on the cathode of tube Vg under
these conditions is larger than the rectified diode voltage by a factor of
approximately (Rs + R;/R.). This ratio can easily be made of the
order of 100; therefore, the tube Vy acts as a high-gain amplifier and
cathode follower. The speed of response can be controlled by R, and C;
and can be easily varied from a fraction of a microsecond to several
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Fic. 11-3.---3thernatic diagram of an TAGC circuit utilizing a regenerative cathode-follower
amplifier.

hundred microseconds. The total range of bias voltage available is

adequate to bias the i-f amplifier to cutoff. Because of the gain of the

cathode follower, the tightness of control is excellent.

These IAGC rings can be applied to as many i-f stages as desired.
The first ring is probably best applied to the last i-f stage, then to each
preceding stage in turn until an adequate over-all dynamic range is
available. Figures 11-8 and 119 illustrate the behavior of such TAGC
circuits. Satisfactory prevention of saturation requires proper design
not only of the TAGC but also of other circuits, which will be described
in the following pages.

11.56. Logarithmic I-f Amplifier.—Another scheme used to reduce i-f
saturation! is the so-called “‘logarithmie i-f amplifier.”” Such an amplifier
exhibits a video output voltage essentially proportional to the logarithm
of the input i-f envelope voltage. This characteristic can be achieved

! See Vol. 23, Radiation Laboratory Series, p. 583.
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in at least two ways. L. Belleville has built this type of amplifier by
connecting separate diode second detectors (envelope detectors) to each
i-f stage, then adding linearly the resulting separate video signals. For
small i-f voltages the last i-f stage will make almost the sole contribution
to the video signal, and the video response will be essentially proportional
to the input voltage; this condition will persist until the i-f voltage
becomes large enough to saturate this last stage. For larger input
voltages the last i-f stage will contribute nothing to the output, but the
next-to-the-last i-f stage will make a contribution up to input voltages
for which <t saturates, etc. This procedure can, if desired, be continued
for all i-f stages in the receiver. The final result will be a receiver whose
video output voltage is approximately proportional to the logarithm of
the input voltage; the approximation to the smooth logarithmic curve
consists of a number of straight lines (representing linear response) of
varying slope (the slope depending on the over-all gain up to the particu-
lar contributing detector). For such a receiver the video response is
always finite for incremental changes in input voltage; hence saturation
in the sense described in the preceding section is not possible.

R. A. McConnell has suggested another method of constructing such
a logarithmic receiver. This one also depends upon successive satura-
tions in the i-f stages to secure a logarithmic over-all response, but the
voltage addition for successive stages is made in the i-f amplifier rather
than in the detector or video sections. Only two additional points must
be noted in connection with a receiver of this type: (1) The i-f voltages
from stage to stage are usually in phase opposition; and in adding i-f
voltages in appropriate phase, reversal must therefore be made in all odd-
numbered stages; (2) i-f buffering must generally be used to prevent
feedback from the output to an antecedent part of the i-f amplifier.
Both conditions are easy to bring about, and some satisfactory loga-
rithmic receivers have been constructed in this way.

In the two types of receivers discussed the logarithmic characteristic
extends over a limited region of input voltages. Up to voltages that
begin to saturate the last i-f stage, the response is essentially linear.
From this point up to voltages that saturate all stages the response is
essentially logarithmie, and above this point the dynamic gain is zero.
Therefore these receivers are most commonly referred to as linear-
logarithmic receivers. The crossover point between a linear and loga-~
rithmic characteristic is determined by the saturation of the last i-f stage;
in terms of the input voltage the crossover point can be adjusted to any
desired value by an appropriate setting of the over-all gain of the receiver.

Unfortunately, adequate trials of a logarithmic receiver for use in
clutter have not yet been made. Although such receivers have, qualita-
tively, shown promise, results comparable to those shown in Figs. 11-11 to
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11-13 are not available. It is not yet known whether the logarithmic
characteristic is more or less suitable than IAGC; circuits for IAGC
appear to offer a greater variety of adjustments, but the results are
difficult to evaluate. Linear-logarithmic receivers have been extensively
used in connection with the moving-target-indication schemes described
in Secs. 11-9 and 11-10.

11.6. Video Saturation.—Both the logarithmic receiver and the
IAGC-protected receiver require additional means of preventing video
saturation. In the logarithmic receiver the d-c value of video output
voltage continually rises with increasing input voltage, but the output
fluctuations remain nearly constant. It is therefore customary to remove
the d-c¢ term by means of a high-pass filter or differentiator before injec-
tion into the limited video amplifier. In this way video saturation can
be almost avoided.

In the TAGC, however, not only the d-c term but the fluctuations
increase with input voltage. The d-¢ term rises because of some loose-
ness of control; the fluctuations increase because of the nonlinear amplifi-
cation of i-f stages near their cutoff bias. Most of the video saturation
can usually be removed by the use of a high-pass filter between the
second detector and the video system. This procedure is of great value
only where a relatively loose IAGC circuit is used. However, to reduce
in the detector output the amplitude of clutter fluctuations, which are
troublesome only where the i-f amplifier becomes nonlinear, a circuit
called the detector balanced bias, or DBB, has been developed by
Josephson, Lawson, Linford, and Palmer.! The circuit, shown sche-
matically in Fig. 11-4, is in many ways similar to the TAGC circuit
shown in Fig. 11-3. Instead of biasing the same i-f stage degeneratively,
however, the rectified output voltage from the last i-f stage is used to bias
the following second detector. The amount of applied bias is controlled
by the gain of the bootstrap amplifier V,, which is controlled, in turn,
by the potential divider B; and R,. With certain approximations (low
internal impedance of the diode V1) the gain of the bootstrap amplifier
can be shown to be R./R;; this gain is simply the ratio of video voltage
produced on the cathode of V., to the rectified diode voltage produced
by V. The cathode video voltage of tube V,, which is applied to
bias the cathode of the second detector V,, can therefore be made smaller
than, equal to, or larger than the peak i-f voltage also appearing on the
second detector cathode. The adjustment is usually made so that the
appearance of clutter on the indicator is only slightly more intense than
receiver noise background; that is, the second detector is nearly biased
off by clutter.

1V. Josephson, J. L. Lawson, L. B. Linford, and C. H. Palmer, Jr., ‘“ Anticlutter
Circuits for AEW,” RL Report No. 8-52, Aug. 1, 1945.
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The operation of a simple circuit such as that illustrated in Fig. 11-4
leaves much to be desired. Several useful modifications are shown in
Fig. 11-5. Unless a slow action or delay in time is provided, desired
echoes as well as clutter will be removed. To eliminate this difficulty a
delay line can be inserted between the diode V1, and the ecathode follower
V2, as shown in Fig. 11-5. 1If the total delay is made of the order of the
pulse length, there will be little distortion of desired discrete echoes. The
delay line must be electrically matched at both ends to prevent ““ringing.”
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Fic. 11'4—Simplified circuit of a DBB amplifier.

This matching is effected by making the characteristic impedance equal
to R, which can be shown to provide a match at the output end, and by
placing a resistor £s, also equal in magnitude to Ri, across the input
terminals of the line. A line-delay mechanism of this kind is not feasible
in the TAGC circuits previously described because of the IAGC feedback
characteristics. The circuit would oscillate violently at a frequency for
which the phase shift in the line is approximately 180°.

The purpose of the combination C; and R; is to provide different bias
amplifications for rapid transients and for steady i-f voltages. A larger
gain in tube V,, is required for clutter than for c-w interference (see
Chap. 12). The arrangement shown in Fig. 115 allows the gain for each
type of interference to be adjusted separately. The gain for clutter is
essentially R,/R.; that for c-w interference is essentially R./(R: + Ra).
The purpose of C, is to provide an appropriate time constant making
possible maintenance of transient gain throughout a typical clutter area
on the one hand, and, on the other, reducing the effect of c-w interference
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modulated at a low a-f rate. With the addition to the circuit of R; and
C,, the grid circuit of V5 must be provided with a d-c restorer to obtain
proper d-c voltages after a large section of clutter. This d-c restorer is
the diode V.

The resistors Ris and R.; provide appropriate grid bias to tube Va,
in its quiescent state; this bias is adjusted in such a way that the second
detector V3, is barely nonconducting. The diode Vi is operated
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Fic. 11:5.—Complete DBB circuit.

normally somewhat past cutoff, with the result that normal noise level in
the receiver will not operate the DBB circuit. - This adjustment is made
by proper choice of Rz, which carries the normal current passed by the
cathode follower Vq,. The resistor Rs is initially adjusted so that its
voltage drop just equals the normal grid-cathode potential of tube Vo,
and thus ensures nearly zero potential difference around the loop com-
prising Rs, R1, Ra, and R,. With this arrangement proper operation of
the circuit for normal variations in the electrical characteristics of the
tubes can be secured; Ri; must be adjusted each time V', is replaced,
however.

The bias voltage is applied to the sccond-detector cathode through
an r-f choke and parallel damping resistor Ry. The capacitor C» must
be small enough to present a high video impedance to the cathode of tube
V2, yet large enough to pass the r-f voltages appearing on the plate of the
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last i-f tube directly to the cathode of the second detector. For the
same reasons Cy must be of a compromise size. The inductance L, tunes
the i-f circuit to the appropriate value.

One more circuit detail should be noted. When relatively sharp video
voltages are applied to the cathode of the second detector, some effect of
these voltages is ordinarily seen in the detector output load resistance R;.
This effect is produced by the small interelectrode capacitance of the
second detector Vi, which, together with Ry, acts as a high-pass filter
or differentiator for the biasing video voltages. This differentiator
action can be nullified by the neutralizing arrangement shown. A
voltage of sign opposite to that of the biasing voltage is obtained from the
plate of Vs, through the plate load resistor Ry and is applied to Ry;
through a small capacitor C5. As a result, the effect of the biasing
voltage appearing through the interelectrode capacitance C,x of Vi, is
approximately neutralized if the product of R, and C;5 is made equal tc
the product of K¢ and Cpr. The capacitor C; is necessary to make the
plato-recovery characteristic of the cathode follower Vi, similar in form
to its cathode-recovery characteristic. This similarity is achieved if Cy is
made approximately equal to (Cy + C.)Re/R,.

The final circuit shown in Tig. 11-5 can be made to perform very well.
In response to pulsed signals it behaves much like a “line” differentiator,
that is, one that preserves satisfactorily the shape of the leading edge of
the pulse. Areas of clutter can be made nearly invisible on an intensity-
modulated display, such as the PPI (see Sec. 2-6), by proper adjustment of
R,, that is, the gain of the biasing amplifier. Interfering c-w signals can
be handled smoothly even without a subsequent video high-pass filter,
provided R;is appropriate. The circuit possesses two important features
not available in the simpler video high-pass filter—the adjustable gain
of the biasing amplifier and the delay time of the line. Both features
should be helpful in final operation; therefore, the circuit is in principle
more satisfactory than a simple high-pass filter. This superiority is not
often easily demonstrated, as evidenced in Figs. 11-11 to 11-13, but the
eircuit has been found helpful under many conditions.

11.7. The Time-varied Gain Control.—The time-varied gain, TVG,
control is used to vary the gain of a receiver as a function of the time after
the transmitted radar pulse. It is sometimes called a ‘sensitivity-time
control,” STC, or a “temporal gain control.” The desired gain pattern
is ordinarily accomplished by generating a voltage wave of a prescribed
form, initiated by each transmitted pulse. This voltage wave is applied
to the i-f amplifier gain control lead, and it thus varies the receiver gain
with time according to the shape of the applied voltage wave. If this
voltage wave is properly shaped to conform with the clutter pattern,
receiver saturation may be avoided. The essential difficulty with this
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scheme is producing an appropriate wave shape. For simplicity’s sake,
it is convenient to consider only simple waveforms, such as step functions
or an exponential curve. Simple waveforms will match only those clutter
patterns which are relatively uniform in azimuth and which change
relatively smoothly in range; therefore, they are not generally useful in
rainstorm clutter. The TVG control has proved to be successful in
operation with sea return (see Figs. 11-11 to 11-13 for photographs illus-
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F1a. 11-6.—S8chematic diagram of a TVG control.

trating its efficacy). The circuit of the particular TVG used for these
photographs is shown in Fig. 11-6. The circuit is interesting because,
although characterized by simplicity and economy of components, it will
produce an easily variable wave shape.

When the switch is closed, the operation is initiated by a trigger pulse
from the transmitter; the output waveform consists of an initial, step-
like, flat segment followed by an exponential return to the initial voltage
level. The depth and length of the step are controllable, and the time
constant of the exponential curve is adjustable. In addition, the d-c
level of the entire wave, that is, its quiescent level in the absence of triggers,
is adjustablé. This last adjustment amounts to the usual receiver gain
control.

Typical waveforms at selected points in the eircuit are indicated. At
A the trigger input waveform is shown. The tube V), charges the con-
denser C, to a potential governed by the potentiometer R; during the
applied trigger pulse. The potential across C; decays exponentially at
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the rate determined by the time constant R;C:. Thus the waveform at
B is similar to that depicted in Fig. 11:G, where the initial height of the
exponential function is controlled by the potentiometer R,. This wave-
form would ordinarily be faithfully reproduced at point C because of the
cathode follower V3, but the presence of . B; prevents the cathode from
following the grid potential during a part of the voltage wave. A
sufficiently large negative voltage swing on the grid of tube V, will
produce only a limited negative swing in its cathode; this swing is, in
fact, the product of R; and the normal quiescent current flowing through
the tube Vy. Thus a flat section to the output wave will oceur when the
input voltage drops to a critical value. The depth of the flat section is
controlled by R, and its length by R, (and, of course, R;). The d-c level
of the output wave is controlled by Rs. One other circuit peculiarity
should be noted: the potential divider Rs and Bs. This divider is used to
fix the quiescent grid bias on V3, at such a value that the cathode of Vy,
is at ground potential; in this way the interaction between the controls
Rs and R, is eliminated.

The four parameters of the waveform, namely, the d-c level, depth of
step, recovery time constant, and length of step, are therefore adjustable
by means of the four controls R4, B3, Rs, and 124, respectively. If adjust-
ment is made in this order, little difficulty is experienced in arriving at
final settings; this procedure usually requires only two or three successive
approximations.

11.8. Efficiency of Circuits Used for Reduction of Clutter Saturation.
Results are now available that show graphically the improvement
obtained by the use of IAGC, DBB, and a high-pass video filter of the
simple IZC-type. To obtain beneficial results, however, these circuits
must be designed with particular values of time constants and operating
potentials.

The following general conclusions may be derived from results pre-
sented in Figs. 117 to 11-13:

1. The time constant of a simple high-pass filter is not critical; a value
equal to the reciprocal of the pulse length appears satisfactory.

2. The time constant (product of R; and C;) of the IAGC circuit
shown in Fig. 11-3 should be much larger than the radar pulse
length; a value of approximately 50 usec has been found desirable.
Probably more important than the pulse length in determining this
time constant is the rapidity with which the average value of
clutter (or other) echoes changes in time.

3. Proper operation of the DBB circuit in clutter is obtained with a
transient gain probably from three to four times as high as the
d-c gain. This adjustment is best made in actual trials.
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4. For sea return the TVG is helpful; it is possibly more satisfactory
than any other single circuit.

5. The beneficial effects of various circuits are usually additive.
Experience has shown the use of TAGC to be advisable when
either DBB or a high-pass filter is employed. The combined
results are superior to the results of either circuit alone. It has
not been found helpful, however, to use both DBB and a high-pass
filter. The TVG is always helpful in sea return; it may greatly
reduce the load the other circuits must carry. Its adjustment
requires considerable skill, however, and its use for actual field
operation may therefore be viewed with some misgivings.

These conclusions were derived from data obtained in trials in which
an airborne radar set was used for the study of the effect of sea return.
The radar set employed a beam pattern whose main lobe measured
approximately 8° vertically and 3° horizontally. The wavelength was
approximately 10 cm, and the pulse length approximately 2 usec.
Enough sensitivity was available to obtain clutter from sea return out
to ranges often in excess of 100 miles. The intensity of sea return was
usually sufficient to cause video saturation out to ranges of 40 miles,
provided no special circuits were employed. Typical PP1 photographs
taken at an elevation of 7000 ft are shown in Figs. 11-7a, 11-9a, 11-10a,
and 11-11a. The concentric circles are described by electrical range
marks separated by time intervals each representing 10 miles. As can
be seen, the total area represented in the photographs exceeds 3 X 10*
square miles, yet it is possible to obtain strong echoes in most of this area.
These pictures were taken in the region of Boston, Mass.; the pattern
of Cape Cod, Martha's Vineyard, and Nantucket can easily be seen.
The central portion of the photograph, however, is for the most part a
uniform white region within which it is not possible to see any detail.
'This is the region where video saturation has taken place for both sea
clutter and land return, as well as for such desired discrete targets within
the clutter as ship echoes. In this region even such prominent features
as the shore line between Massachusetts and the ocean immediately to
the east cannot be recognized.

The improvement effected by the use of a simple high-pass filter is
shown in Fig. 11-7b, ¢, and d. Each photograph was obtained using a
different time constant in the filter. The white portion in the center
extending out to the 20-mile range mark is an unfortunate addition to the
photographs; it is caused by a marker introduced for reasons not pertinent
to this discussion. It can be seen, however, that some improvement is
made possible by the use of the high-pass filter; the region of complete
saturation is smaller than that in the normal case (see Fig. 11-7a). The
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value of the time constant is not critical; careful inspection of the original
photographs shows that a value equal to the pulse length is probably most
desirable.

The improvement shown in Fig. 11-7 is not marked; this is explained
by the presence of i-f saturation and some residual video saturation. The

Fr¢. 11:7..—Photographs showing the effectiveness of a high-pass video filter: (a)
results with a normal receiver and (b), (¢), and (d) results of varying the values of the
product RC of the filter. (b) RC = 0.25 psec. (¢) RC =1 psec. (d) RC =2 pusec.
The pulse length T was 2 useec.

great improvement in results obtained by using the TAGC, is shown in
Fig. 11-8. Four photographs are shown; each one is taken for different
values of the TAGC time constant (R, times C;3 in Fig. 11-3). For each
of these photographs a high-pass filter was also employed because the
TAGC used was not sufficiently effective to prevent video saturation.
As can be seen, the proper IAGC time constant is much longer than the
radar pulse length; a value of 30 to 60 usec has been found most satis-
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factory. A single photograph illustrating the use of IAGC alone is
shown in Fig. 11-9b; for this photograph a time constant of 60 uscc was
used in the JAGC circuit. Considerable video saturation still remains,
and the result obtained by the combined use of the IAGC and the high-
pass filter is far superior to that obtained by the use of either circuit alone.

F1c. 11.8.—Photographs showing the effectiveness of the TAGC circuit with a high-pass
video filter. They show the effect of varying the time constant of the TAGC circuit.
(@) R:Cs = 0.20 usec. (b) R:Cy = 1.2 psec. (¢) R:Cy = 6 psec. (d) R:Ci = 60 usec.
Compare with Figs. 11-7a or 11-9a for normal operation.

The operation of the DBB circuit is illustrated in Fig. 11-10. The
three photographs (Fig. 11-10b, ¢, and d) were taken with different values
of transient gain. As can be seen, the use of too much gain results in a
“reversal” of the land areas. Too little gain fails to effect the desired
improvement. When the proper gain is used, the land areas are easily
recognized, yet sea clutter is kept below strong saturation. Tor these
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F1¢. 11-9.—Photographs showing the effectiveness of the IAGC alone. (a) Receiver normal; (b) the JAGC set as in Fig. 11-84, with no
high-pass video filter.
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photographs IAGC was used vo prevent i-f saturation. The proper gain
setting lies between the values used in Fig, 11-10b and c.

The TVG is extremely effective, as can be seen in Fig. 11-11b.  Strong
sea-clutter saturation is completely prevented, although there remain
a few completely black areas, which represent a more than sufficient

F16. 11-10.—Photographs showing the effectiveness of IAGC and DBB. They show
the results of varying the gain of the DBB circuit. The IAGC circuit is set the same as in
Fig. 11-8d. (a) Receiver normal; (b) gain = 3; (c) gain = 5; (d) gain = 7.
receiver gain reduction and therefore a lower system sensitivity in those
areas than would have been desired in principle.

The six photographs of Figs. 11-11 to 11-13 illustrate the final results
obtained by the use of the various circuits described. A normal picture
is shown, together with one showing the evident improvement obtained
by the use of IAGC and either a high-pass filter or DBB circuit. In
addition are shown the results obtained by the use of the TVG and,
finally, by the use of both the TVG and the proper combinations of IAGC,




(@)
F1g, 11:-11.—Photographs showing the effectiveness of a TVG control.

®)
(@) Receiver normal; (b) with TVG.
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F1e. 11-12.—Photographs showing the effectiveness of IAGC circuits and a high-pass video filter (a) without TVG and (b) with TVG,
For comparison with normal receiver see Fig. 11-11a.
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Fra. 11-13.—Photographs showing the effectiveness of IAGC and DBB circuits (a) without TVG and (d) with TVG, For comparison with a
normal receiver see Fig. 11-11a,
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high-pass filter, and DBB. It is evident that the use of either combina-
tion of three circuits as shown in Figs. 11-12b and 11-13b gives the best
results; sea return is nearly invisible, yet many ship echoes can be clearly
seel.

1t should be clearly understood that only some of these circuits will be
effective for other forms of clutter. The dramatic improvement effected
by the use of TVG as shown in Fig. 11-11 readily suggests that this circuit
alone would suffice for all practical needs, but this assumption does not
obtain in cases of clutter originating in storm areas. The complicated
spatial pattern of such storm areas makes TVG useless, and reliance must
therefore be placed on the other circuits. Figure 11-14 shows how
effective appropriate circuits can be. Figure 11-14b shows a PPI whose
radius represents approximately 20 miles. The faint concentric eircles
are range marks separated by intervals representing 5 nautical miles.
The strong circle at a range of 8 miles is an artificial echo from a test
signal generator injected directly into the receiver. Since this signal is
not collected by the antenna, it has no dependence on azimuth; hence it
appears on the PPI as a circle. The echoes seen in the photograph are,
for the most part, produced by objects on the ground. The ground return
is confined mainly within a radius of 10 miles because the radar set was
located at an elevation of about 100 ft. Some discrete ground targets are
still noticeable out to the edges of the PPI, however. In the photograph
are also shown the echoes from some storm areas; they are recognized by
the extended nature of the returned pattern and the undefined, fuzzy
edges characteristic of such clutter. These clutter areas are noticeable
in the left-hand and in the lower right-hand sectors of the photograph.
There is also a clutter area at the lowest part of the signal generator circle
sufficiently intense to obliterate the signal generator echo in this region,
as well as many discrete land echoes.

The improvement afforded by the use of proper ITAGC and DBB cir-
cuits is shown in Fig. 11-14a. The clutter from the storm areas is
practically removed, and the underlying discrete ground echoes can be
seen. Furthermore. the signal from the tes¢ generator can be seen in its
entirety, with the exception of three or four small breaks; these are due to
the small recovery time of the TAGC, operated by an intense preceding
land echo. These breaks do not represent poor performance of the IAGC
circuit; they occur in regions for which the test signal was already invisible
in the original photograph. Ordinarily no desired signals are lost when
the clutter circuits are used properly and in the proper combination;
Fig. 11-14 bears out this statement. Furthermore, the improvement in
operation resulting from the use of clutter circuits is substantial, provided
the cireuits are properly designed.




(@)
F1g. 11:14,—Photographs showing the effectiveness of anticlutter circuits on storm clutter.
receiver normal.

®
(@) Receiver with TAGC and DBB circuits; ()
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MOVING-TARGET INDICATION

11.9. General Description.—In the preceding discussion of signal
threshold in clutter most of the properties of clutter were shown to be
similar to those of the desired signal; hence conventional methods of signal
separation do not yield spectacular results. The fundamental purpose
of all the clutter circuits mentioned is to reduce the saturation likely to
occur in various parts of the receiver. After the saturation is removed,
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antenna antenna

R-f - Local
transmitter Coho Converter I oscillator
- J
- |
. 2nd detector :
Non-saturating . Delay line
Modulator P i — and video b
i-f amplifier amplifier and amplifier
]
Channel-
Video - Echo from-channel - 22: dd:itggtoor
amplifier rectifier - subtraction - amplifier
circuit P
‘ Signals to PPI

Fia. 11-15.—Block diagram of an MTI system.

these circuits may not be able to select preferentially the desired signal
from strong clutter echoes or from other interfering discrete echoes, for
example, those coming from objects on the ground, for the reason that a
reflecting object on the ground has been assumed to yield a signal of the
same type as that given by the desired target. This assumption may not
be correct. Most of the time the desired object differs from a ground
object in one important respect: It is usually moving. This fact may be
utilized in devising a method of discriminating between the desired target
and interfering fixed objects. Many schemes for making this discrimi-
nation have been suggested, and at least one or two have been developed
to a highly successful degree. One such scheme, developed by R. A.
McConnell and his colleagues, is explained in the following discussion.

The essential differences between the scheme for moving-target
indication, or MTI, and the conventional method of radar operation lie
in the form of reception and in the way the video signals are handled
before they are presented on the PPI. A typical system is shown in
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block form in Fig. 11-15. The transmitted pulse is produced in the
conventional way by the action of a pulse-forming modulator on the r-f
transmitter. The received echo signal is injected into the superhetero-
dyne converter along with the local oscillator, but in addition there is
injected the output of a coherent r-f oscillator, or ““coho.” This oscillator
is restarted at each pulse with a phase defined by the transmitted r-f pulse
and delivers into the receiver a constant r-f voltage larger than any
desired echo voltage. Therefore the signal voltage from the desired
echo, added to the coherent-oscillator voltage, will produce a change in
r-f voltage; either an increase or a decrease will result, depending upon the
relative phases of the echo and the coho. This scheme is therefore one in
which the output voltage in the i-f amplifier not only is a function of echo
amplitude but is dependent on the phase of the echo return relative to the
coho and hence relative to the main transmitted pulse. Since the total
echo phase relative to the transmitted pulse is dependent only on the
distance from transmitter to reflecting target and is, in fact, a measure of
this distance in terms of the r-f wavelength, phase variations will occur
only by radial target movement. One wavelength change in radial
distance will result in a 4r change in r-f phase of the echo and hence,
because of the local oscillator and converter, in a 4 change in i-f phase
relative to the i-f coho voltage.

The i-f amplifier that follows the superheterodyne converter is of a
nonsaturating variety, protected either by TAGC or by linear-logarithmic
construction. The i-f amplifier output is split into two channels; one of
these channels produces a conventional video signal, and the other
produces an exact replica of this signal except that it is delayed in time.
The delay in time is made to correspond precisely with the interval
between the initiation of successive transmitted pulses, that is, the
reciprocal of the PRF. In this way two video outputs, obtained from
successive transmitted pulses, are available. These two video channels
are then put into a circuit that takes their difference. In the output line
of this channel-from-channel subtraction circuit will appear only signals
whose phases have changed appreciably in the time between pulses.
Echoes from fixed objects will have a fixed phase and amplitude from
pulse to pulse; hence they will give identical video signals in the two
channels and therefore be completely canceled out in the subtraction
circuit. The complete system up to the output of the subtraction circuit
therefore represents a scheme by which echoes from moving targets are
made visible and echoes from fixed targets are completely removed.
The moving target, to be visible, must move an appreciable fraction of
a wavelength in the time between successive pulses.

If the cancellation is to be effective, the two video channels must have
exactly equal signal amplitudes and shapes; this can be effected if the i-f
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bandwidth at the input of each second detector is the same and if the
over-all gain through the delay line and post-delay amplifiers is properly
set. These conditions are not especially difficult to obtain. The delay
line itself has usually assumed the form of a liquid transmission medium
in which supersonic waves are propagated. Quartz crystals are generally
used to convert electric energy into sound energy and vice versa. The
over-all attenuation of such a delay line depends upon the bandwidth
desired and for the usual case is of the order of magnitude of 60 db. Thus
the amplifier following the delay line must have an over-all gain in excess
of 60 db with adequate bandwidth and negligible noise. Such an
amplifier is, however, easy to construct and adjust.

Another scheme devised to obtain delayed video signals uses a
cathode-ray storage tube. It has not, however, been so highly developed
as the one using a supersonic delay line. In this system the video signals
are stored on a suitable cathode-ray-tube screen and are later taken off
again for purposes of comparison. This system has generally suffered
by comparison with the supersonic line for two reasons: (1) The signal
definition is usually not so satisfactory because of the finite area of the
electron beam and possibly the ‘“graininess” of the storage surface; (2)
the time over which adequate storage can be maintained is limited because
of charge leakage in the screen material. It appears, however, that these
limitations are not too serious; already storage tubes that show adequate
length of storage time have been built.

The output from the subtraction circuit invariably contains signals of
both polarities depending upon the change in phase of the signal from
pulse to pulse. It is customary to convert these signals into signals of one
polarity by means of an echo rectifier. The operation with an intensity-
modulated display, such as the PPI, is thus made considerably more
satisfactory. A video amplifier between the echo rectifier and the PPT,
as shown in Fig. 11-15, is used to bring the signals to a satisfactory value
for easy visibility.

The construction of an actual system similar to that shown in Fig.
11:15 has shown up certain difficulties that have necessitated minor
changes. To ensure an adequate coho, whose r-f voltage is larger than
that produced by the largest desired echo, enough i-f voltage from the
coho and local oscillator must be produced to overload even a carefully
designed i-f amplifier. It has therefore become customary to inject the
coho as an <-f voltage directly into the second detector input, as shown in
Fig. 11-16. In this case the coho is an #-f osciliator, which is started at
the time of the transmitted pulse but is locked in phase to the i-f pulse
produced by the conversion of the r-f transmitted pulse. This scheme,
like the one shown in Fig. 11-15, is sensitive to the phase of the echo, but
the coho voltage itself never goes through the i-f amplifier and cannot
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therefore cause i-f overload. The i-f amplifier itself is made nonsatu-
rating either through TAGC or through linear-logarithmic construction.

Stability throughout the MTI system must usually be very high, and
special precautions must often be taken with various components. The
local oscillator and coho must be stable to a small fraction of a cycle in
phase, even at very long ranges, that is, for a very large number of cycles.
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. / Converter and
transmitter oscilfator amplifier
| Y ’
Non- 2nd detector
Modulator Coho saturating and video
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|
Channel-from-
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circuit

iSignals to PPl L -

Fic. 11-16.-- Block diagram of an MTI system.

The transmitted pulses must be formed at precise time intervals,
determined essentially by the delay time of the delayed video channel.
An elegant scheme, attempted in various forms, is to trigger the modulator
for the transmitter from pulses derived from the delay line itself. These
may be obtained in several ways, but care must be taken not to interfere
with the usual video operation of the delay line. In any case the time
difference between the delay in the delayed video channel and the
interval between transmitted pulses must not be greater than a small
fraction of a pulse length.

In spite of the many requirements for stability, however, systems have
been built that perform exceptionally well. An example of the efficiency
of the device is shown in Fig. 11-17, where the PPI pictures are shown.
In each of these photographs an easily recognized sector slightly larger
than 90° displays normal system operation and normal ground clutter.
Within the ground clutter not only is it impossible to recognize desired
signals, such as those from aircraft, but even land configuration is lost
in the intense saturation. Outside the sector showing normal system
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operation the MTI system is in effect and shows the phenomenal success
achieved in suppressing ground clutter. Several signals are visible, all
due to aircraft, in the MTT sector.

Although the MTI was originally developed to combat the effects of
ground clutter, its effectiveness in counteracting most other forms of
clutter was soon appreciated. It was pointed out in Sec. 11-1 that the
configuration of reflectors, which causes sea clutter or storm clutter,
changes relatively slowly with time; therefore the channel-from-channel
subtraction circuits of Figs. 11:15 and 1116 should almost cancel the

¥16. 11-17.—Photographs showing the effectiveness of MTI in removing ground clutter.

Several aircraft signals are visible in the sectors covered when MTI was operating.
clutter echoes, and they actually accomplish this. An example of the
effectiveness of cancellation is shown in Fig. 11-18. The first photograph
shows a normal PPI picture with a 30-mile sweep. Return from storm
areas is easily visible at azimuths of about 15° and 150° and near 30
miles range and at 60° azimuth and 15 miles range. The second photo-
graph is an MTI picture, taken approximately at the same time, and
shows almost no evidence of storm clutter.

It has become customary to express the effectiveness of MTI operation
in terms of the subclutter visibility. This term specifically expresses, in
decibels, the ratio of the strength of the echo that, produced by a signal
generator of random phase, is barely detectable on a PPI in clutter with
which it coincides in range during normal system operation, to the
strength of the echo barely detectable when the MTT is in operation, and
the adjustments are such that the clutter itself is not visible. In ground
-clutter a subelutter visibility of —20 db in the field or perhaps —30 db in
the laboratory can be achieved at a wavclength in the 10-¢m region and a
PRF of approximately 2000 pps. Storm clutter can be reduced as much
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as 10 to 15 db, the figure depending on the spatial velocity and, pre-
sumably, the turbulence of the storm. There are instances where little
or no reduction of clouds has been observed. Nevertheless these figures
represent an improvement by an order of magnitude over the usual radar
detection capability, even when the radar is equipped with the special
circuits previously described. There is no improvement, however, for
slow-moving targets.

F1a. 11-18.—Photographs showing the effectiveness of MTI in removing clouds, particularly
those in the upper right-hand quadrant.

11.10. Threshold Signals in the MTI System.—The MTI system just
described makes use of two general principles: (1) the production of a
coherent video signal, (2) a delay and cancellation principle. Threshold
signals in the over-all system can best be analyzed by considering the two
parts separately. An exhaustive treatment of the subject will not be
attempted here, but it is hoped that the discussion will give some insight
into the mechanism of signal perception.

Coherent Systems.—The analysis of threshold signals follows much the
same pattern as that used in Chap. 8 for the ordinary system. Certain
striking differences are noted in the quality of the output signal, however.
The appearance of the signal depends upon its phase relative to the coho
and especially upon whether the phase is unchanging, continuously
increasing, or continuously decreasing. The case for a fixed target whose
phase is optimum, that is, in phase with the coho will be considered first.

Fized Target—In this case the signal is recognized by an amplitude
deflection that exceeds random noise deflections. These deflections can
all be measured relative to the amplitude of the coho voltage since this
latter voltage is the amplitude that exists in the absence of both noise and
signal. Since the signal is in phase with the coho, the signal deflection
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is simply given by the signal voltage. The noise, however, has a random
phase with respect to the coho and therefore produces a zero-average
deflection amplitude, whether the signal is present or not. Nevertheless
the noise produces chance fluctuations in the total voltage that depend
upon the rms value of the noise voltage itself. Therefore for a single
observation the threshold signal voltage will be of the order of the equiva-
lent noise voltage.

As is well known, however, for a number of observations the fluctua-
tions are reduced to a value that is inversely proportional to the square
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Fia. 11-19.—Schematic behavior of detector output voltage with signal plus noise in a

coherent syStem.
root of this number. This follows from the Gaussian nature of the noise
amplitude distribution and is the same consideration that has been
applied to noise in the usual noncoherent system (see Chap. 8). We can
therefore write the conditions for threshold signal in the following form:

Vssu PSvo = 55 (1)

IRVZFE s
where Vs, and Pg,, are the voltage and power of the threshold signal
respectively, Vy and Py are the rms voltage and power of the noise,
respectively, and N is the total number of observations.

It has been assumed in the preceding discussion that a coho voltage,
lirge compared with either the signal or the noise, and a linear second
detector are used. In the comparison between signal power and noise
power, the linearity of the second detector need not be assumed provided
the coho voltage is large. The usual quadratic detector will be essentially
Iinear under this condition; it is the same kind of condition that makes the
superheterodyne converter linear in its action.

An illustration of the quantities involved is shown in Fig. 11-19. In
the first drawing a plot is made of the relative probability of finding a
given detector output voltage as a function of the given output voltage
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averaged over a few observations. The bell-shaped curves are produced
by the Gaussianlike noise fluctuations; the threshold signal is one that
shifts the average output deflection by an amount approximately equal
to the width of the noise distribution. For a large number of observa-
tions the average noise fluctuation is reduced in accordance with Eq. (1);
and as the second diagram of Fig. 11-19 shows, the threshold signal
voltage can be reduced by a like amount.

It will be noticed that the dependence of signal threshold power on the
number of observations, that is, integration time, differs from that noted
in the noncoherent system. This difference was first pointed out by
Emslie,! who showed that in the coherent system the total threshold
signal energy is independent of the number of observations. This con-
clusion means that for fixed targets the sensitivity of the coherent system
may be far higher than that of the noncoherent system. The improve-
ment is accounted for by the better integration from pulse to pulse arising
from the linear form of signal deflection, even though the signal is smaller
than noise itself.

A better criterion than Eq. (1) could be obtained; in fact, from accu-
rate curves of the type shown in Fig. 11-19 betting curves similar to those
shown in Chap. 8 could be constructed. This is beyond the scope of this
chapter, however. It is sufficient here to point out that apart from these
refinements, Eq. (1) must be interpreted properly. The total noise power
is, of course, essentially proportional to the i~f bandwidth; the signal
deflection is proportional to the i-f bandwidth for small values of the
latter and independent of bandwidth for large values. Thus the signal
deflection will depend on i-f bandwidth and will have a maximum in the
neighborhood of Br = 1, where B is the i-f bandwidth and 7 is the pulse
length. This is the same situation that was found in Chap. 8; therefore
Eq. (1) should be used only where the signal deflection is, in fact, not
seriously affected by insufficient i-f bandwidth. The complete depend-
ence on i-f and video bandwidths could be calculated, if desired, by
methods similar to those used in Chap. 8.

Unfortunately, there are at the present time no good experimental
results that confirm Eq. (1). The dependence on the total number of
observations Ng¢ has been checked qualitatively, however. The results
obtained show that the signal threshold power is inversely related to a
power of Ns; the power was found to be greater than 4 but less than unity.
This conclusion is not entirely unexpected; for signals very small with
respect to noise, that is, for a large number of observations, the effect of
contrast limitations was anticipated. It is believed therefore that Eq. (1)
probably holds only where N5 is small and fails when Ny is large because

I A. G. Emslie, “Coherent Integration,” RL Report No. 103-5, May 16, 1944.
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of the finite contrast required for perception by the human eye and brain
mechanism.

For fixed targets not at optimum phase with respect to the coho, the
same arguments apply, except that the signal deflection is not given
directly by the signal voltage. It is simply the product of the signal
voltage and the cosine of the phase angle between the coho and the signal.

Moving Targets—For moving targets the signal deflection averaged
over a large number of cycles is zero. This is because the time spent in
any particular phase is the same as the time spent in the opposite phase;
therefore the signal is not recognized by an average deflection in output

o, No signal No signal
23 ~ { _ In-phase [
b S Out-of-phase  , ™ N\~ signal
€2 signal =/ N\
; g ! Average of in-
= phase and
€8 out-of-phase
g g signals
g h-
=
33
= 7 NN - ~a

Detector output voltage averaged over a few obvervations

F1a. 11-20.—Schematic behavior of detector output voltage for in-phase and out-of-phase
signals in a coherent system.

voltage. The signal, however, acts in such a way as to broaden the out-
put amplitude distribution. This can be observed qualitatively by
averaging the distributions of signal and noise for both in-phase and out-
of-phase signals; this process is indicated in Fig. 11-20. The first diagram
indicates in dotted lines the distribution of in-phase and out-of-phase
signals added to noise. The second diagram indicates by a dotted line
the average value of these two conditions and compares the resulting
distribution with that in the absence of a signal. The signal can be seen
to broaden the distribution. It can be shown analytically that with
signals small with respect to noise power, this broadening is proportional
to the square of the signal voltage. A signal will be recognized when the
broadening is of the order of magnitude of the noise fluctuation; therefore
the threshold condition will occur if

v Py, ~ 2L @)
_\/m or 890 = \/mi

where Vs, and Pg,, are the voltage and power of the threshold signal,
respectively; Vs and Py are the rms voltage and power of the noise
respectively; and Ny is the total number of observations. It can be seen,
therefore, that for noncoherent signals the threshold power varies
inversely with the square root of Ns; this is the same dependence on Ng

2
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that is observed to hold for signals obtained on the usual noncoherent
system. Equation (2) is, like Eq. (1), subject to limitations of i-f band-
width and contrast; these quantities have not been carefully investigated
either experimentally or theoretically. Since the dependence on N is
the same as for the usual noncoherent case, however, it is convenient to
know how the threshold signal depends upon the introduction of the
coho. This dependence has been checked experimentally, and the
introduction of the coho found to increase the threshold signal power by
approximately 3 db. It is believed, therefore, that, with the introduction
of this correction factor, the problem of the perception of a moving target
in a coherent system is essentially the same as that solved in Chap. 8.

For the sake of completeness, the statement just made requires one
reservation. In principle the starting phase of the coho can be changed
at a rate that makes its phase relative to the moving target stationary.
Under this condition the moving target echo will behave like the fixed
echo previously described, and Eq. (1) will be valid. However, this
requires that the radial velocity of the moving target be known or found
quickly; this condition is not generally found in practice and may there-
fore be neglected.

Delay and Cancellation.—The principle of delay and cancellation used
in MTTI alters the signal and noise responses. The signal response will
first be considered, then the noise response, and finally the signal response
in the presence of noise.

1. Signal response. The signal is essentially a series of pulses whose
amplitude is varied sinusoidally at a frequency determined by the rate
of phase shift brought about by target motion. This frequency f is, in
fact, the Doppler shift in returned radio frequency produced by target
movement and is given by

f= T’ (3)

where » is the radial target velocity and A is the r-f wavelength. The
amplitude of an output signal pulse in the delay-and-cancellation scheme
is essentially the difference between the amplitude of a given pulse and the
amplitude of the preceding pulse. The marimum signal output deflec-
tion will occur at the point of maximum difference in the sinusoidal
signal-amplitude curve. For a signal of unity peak amplitude (each
side of the no-signal amplitude) the maximum amplitude of the output
signal will be given by

Ama = 4)

2 sin 27 = b
where f, is the PRF. A plot of A vs. f, as shown in Fig. 11-21, shows
that the signal response has maxima at a frequency of half the PRF and
at all odd harmonics of this frequency. Likewise, at a frequency of the
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PRF itself or its harmonics, the system will give no output indication
whatsoever. For very low frequencies, f < f,, the system is relatively
unresponsive; this is the feature which permits the system to reject fixed
ground clutter and also relatively slow-moving sea or storm clutter.
The curve shown in Fig. 11-21 is a bit disturbing because there appear

to be regions in f and hence in radial target velocity » where the system is
“blind.” This is indeed the case, but the situation is not so serious as it
seems. Because of the presence of propeller modulation, as discussed in
Chap. 10, these blind speeds are not

%5 3 actually observed when the target
%é 2 is an airplane. The propeller modu-
3 ) lation prevents the envelope of the
Es returned series of pulses from as-
=20 suming a simple sinusoidal form; the

5 2% 3
Doppler frequency f
Fia. 11.21.—MTT “blind speeds.”

blind speed regionsare thereby ““filled
in,” and the signal loss within these
regions is considerably less.

2. Response to noise. The video noise that appears in the output of
the cancellation network is easily calculated. Since the noise distribution
in the coherent video system has a symmetrical shape about the axis, the
addition of two independent noise channels will give the same average
noise distribution as will the subtraction of these channels. Thus the
noise fluctuation voltage in the output of the cancellation circuit will be
larger than the voltage in each channel by a factor of /2 and will have
approximately the same Gaussian shape.

3. Response to a signal in the presence of noise. In the presence of
noise, the signal will consist of a series of pulses modulated by a sinusoid
of frequency f. The amplitude of this sinusoid is governed both by the
input signal amplitude and by the PRF, shown graphieally in Fig. 11-21.
The average value of the signal output voltage is zero; therefore for signal
visibility a broadening of the noise distribution must be effected in a way

‘similar to that for which Eq. (2) is valid. Therefore the threshold signal

power will vary inversely with the square root of N. The various system
parameters are expected to have effects similar to those described in Chap.
8 for parameters in a conventional noncoherent system. It is necessary,
however, to normalize the threshold power for two effects: the first is the
action of the coho, the second, the effect of target velocity. As was
mentioned previously, the effect of the coho is to increase the signal
threshold power by about 3 db; the effect of the target speed is shown in
Fig. 11-21. In a practical case in which aircraft are used as targets, the
average signal threshold increase produced by various target velocity
blind spots does not appear to be serious. Either the blind regions are so
small that they are seldom encountered, or they are filled in satisfactorily
by propeller modulation.




CHAPTER 12
THRESHOLD SIGNALS IN ELECTRONIC INTERFERENCE

As is pointed out in Secs. 6-6 to 6-8, the different varieties of electronic
interference can be roughly classified as simple and complex. In each of
these categories the effects of the particular interference and the methods
for its alleviation depend upon the detailed structure of the interference.
This chapter will treat the question of pulsed-signal threshold power for
three types of interference: (1) unmodulated c-w interference, (2) noise-
modulated c-w interference, and (3) pulsed interference. Pulsed inter-
ference may be of either the simple or the complex variety discussed in
Secs. 6-7 and 6-8; cases of both varieties are presented together, since
methods for their alleviation are similar. In all cases treated it is
assumed that the interference has been allowed to reach the i-f terminals
of the receiver; that is, no r-f measures have been taken to minimize
interference.

THRESHOLD SIGNALS IN
UNMODULATED CONTINUOUS-WAVE INTERFERENCE

12:1. Effect of C-w Interference.—A description of the c-w inter-
ference itself is almost unnecessary; it consists essentially of a constant-
amplitude, constant-frequency voltage, which we assume exists at the
input terminals of the i-f amplifier. The signal pulses and equivalent
noise also appear on these terminals, however. Our problem is to consider
the interaction effects of all three voltages in an attempt to evaluate the
threshold signal. Because many receiver and indicator characteristics
are involved that do not lend themselves to easy analysis and measure-
ment, the task is a difficult one. Wherever possible, however, quantita-
tive results will be given.

Interaction of C-w Inierference with Signal.—Let us assume, for
simplicity’s sake, that the c-w voltage is large compared with the pulse
voltage. The signal will cause a change in the output voltage of the
second detector. As the pulse and the c-w interference may oceur with
any relative phase and with any difference in frequency, the video signal
will consist of a small element of length proportional to = (the pulse
duration); this element has an amplitude that differs from the video
voltage (produced by the interference) by an amount proportional to the
pulse voltage. The video frequency during this element is the difference
between the pulse and c-w frequencies. The situation is shown in Fig.
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12-1. Because the phase relationships are not, in general, maintained
from pulse to pulse, the video signals from many pulses take on all
possible phase combinations.

If the c-w interference is at the same frequency as the pulse, i.e., on-
frequency c-w interference and the i-f bandwidth is sufficiently wide, the
video signal will evidently consist of a number of video pulses of duration

7 and of varying amplitudes, de-
pending upon the phase relation-
ship of the c-w interference and
o- . the signal. On the average it is
equally likely for the c-w inter-
ference to be in phase with the
signal as to be out of phase; there-

C-w i-f interference voltage

|-f signal puise

C-w d-c voltage
0_ - e . . e e e aw = - & e
Video voltage
1 16. 12-1.—Voltage waveforms when signal F1c. 12-2.—Voltage wave-
pulse and c-w interference are mixed. forms of video signal in pres-
ence of on-frequency c¢-w
interference.

fore the average video deflection over a large number of pulses is zero.
(We still assume that the signal deflection is the change in video deflec-
tion caused by the signal.) The appearance of the signal on an
A-scope, however, will be similar to that when no c-w interference is
present, except that the signal is “filled in” and extends both sides of the
baseline (see Fig. 12-2). It is already clear that the signal threshold
power probably will not depend upon the average video deflection. The
peak deflection of this video signal depends upon the type of second
detector: for a linear detector the peak deviation from the baseline is
unchanged by the interference, whereas for a quadratic detector the
amplitude of the video signal depends markedly. on the intensity of the
¢-w interference. For this reason the linear detector is generally pref-
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F1a. 12-3.—Video wave shapes and spectra for symmetrical signals (cosine functions).
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erable; comparison of signal amplitudes is possible even in the presence
of the interference. (These statements are valid only if overloading is
avoided in the receiver. Prevention of overload is a very difficult task,
yet it can be accomplished with some success.)

The amplitude spectrum of the video signal in the case of on-frequency
c-w Interference is simple. It is the sameé as the spectrum of the pulse
in the absence of ¢-w interference but with a different over-all multiplica-
tive constant. For a single pulse it is clear that the shape of the video
pulse is unchanged by the interference; its amplitude, however, depends
upon the phase of the pulse relative to the c-w interference.

For off-frequency c-w interference the spectrum of the video signals
is altered. One can appreciate this by noting that the video signal is
derived principally from the beat tones between the c-w interference and
the pulse frequencies. Typical spectra for several cases are shown in Fig,
12-3. As can be seen, the spectrum for a given pulse can be derived by
“folding”’ the original pulse spectrum about an axis that represents the
c-w frequency; in this way the beat tones, which are the video frequencies,
are made evident. The diagrams shown in Fig. 12-3 assume that the
pnase in each case is adjusted in such a way as to make the video wave-
form symmetrical with respect to the center of the pulse, that is, it con-
sists only of cosine functions. Similar diagrams can be drawn for the
antisymmetrical waveforms representing sine functions; these are shown
in Fig. 12-4. To derive the amplitude spectrum for any phase difference
between c~w interference and signal, the video signal must be separated
into sine and cosine functions whose origins are located at the center of
the pulse. The spectrum of each of these functions is obtained as shown
in Figs. 12-3 and 12-4, and the amplitudes of the resulting components
are added vectorially at right angles. In this way the video spectrum
for any specific case can be rapidly computed.

Interaction of C-w Interference with Receiver Noise.—As in the case of
the signal, the c-w interference voltage is assumed to be large compared
with the receiver noise. In such a situation the video noise, like the
signal, becomes two-sided, that is, it “beats” below the baseline as often
as it appears above the baseline. Furthermore, as might be surmised
from the preceding discussion, the spectrum of the resulting video noise
is altered by the interference; it consists simply of the beat tones between
the i-f c-w interference component and the i-f noise components. Assum-
ing the i-f noise components to be equally distributed over the i-f band-
width, we can obtain the video amplitude spectrum of noise by folding
the amplitude response curve of the i-f amplifier at the frequency of the
c-w interference in much the same way as was done for the signal
frequency components in Figs. 123 and 12-4. 1In this case, however, no
relationship exists between the noise components of the two folded halves;
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therefore the resulting spectrum is obtained by adding these halves in
quadrature, i.e., vectorially at right angles.

The amplitude of the video-noise fluctuations is increased by the
addition of the interference; for a linear detector this increase is approxi-
mately equal to /2 and is independent of the amplitude of interference
for large values of interference. For a quadratic detector, however, the
increase depends on the intensity of interference; for this reason the linear
detector is generally preferred, especially when video overloading is
considered (see Sec. 12-4).

From what has already been said it can be inferred that the introduc-
tion of interference in a system with a linear detector will not appreciably
impair the signal response, nor will it increase the noise amplitude by
more than the factor /2. This inference is, of course, justified only if
the video bandwidth is sufficient to pass the signal video frequencies and
if the interaction effects between signal and noise are essentially
unchanged by the interference. The effect of inadequate video band-
width will be discussed in Sec. 12-4; it is sufficient for the moment to note
that if the video bandwidth is as large as the full i-f bandwidth, adequate
signal response can be assured.

The interaction effects between signal and noise in the presence of
c-w interference can be investigated theoretically. This effort, however,
is probably not yet justified, since the ultimate criterion for signal visi-
bility is not yet established. It has already been remarked that this
criterion can no longer be obtained from the average deflection, because
the average deflection for both signal and noise is zero. It is probably
more realistic to choose the average absolute value of deflection for a
criterion. Nevertheless, no matter what ecriterion is chosen, one still
does not know how to take into account the fluctuating character of the
signal. Thus experimental results are probably most reliable and useful.

Experiments performed by H. Johnson, and J. L. Lawson,! and by
Stone? demonstrate conclusively that if overloading is avoided, the signal
threshold power increases approximately 3 to 4 db because of on-fre-
quency c-w interference. This threshold increase is independent of the
intensity of the interference, provided the interference is strong compared
with signal and/or noise power. It must not be inferred from these
experiments, however, that this relatively small increase in signal
threshold power is all that is usually found. In actual fact the major
effects ordinarily encountered are caused by overloading phenomena in
either the video or i-f sections of the receiver. These will be discussed
later. :

! Unpublished, but see RL Report No. 910, Mar. 22, 1946.

* A. M. Stone, “Synthetic Radar Echoes in the Presence of Jamming,” RL Report
io. 708, June 22, 1945.
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12.2. Video Overloading.—Overloading or saturation in some part of
the video system is the most common and most serious effect produced by
c-w interference. The severity of the effect varies with the type of
indicator, the intensity-modulated indicator, such as the PPI, being in

Second ; - o Linear :
detector Filter Limiter amplifier Indicator

Fi1a. 12-5.—Block diagram of typical video system.

general most easily affected. The reason for this is the necessarily
increased limiting that must be employed with this type of indicator to
prevent defocusing, or “blooming,” with strong signals.

A block diagram of a typical video system is shown in Fig. 12-5.
The output voltage from the second detector is first filtered by an
appropriate high-pass filter whose
purpose will be described below.  *% N
The filtered voltage is amplified
by an essentially linear amplifier
before it is applied to the indicator
system. The peak outputvoltage
that can be applied to the indi-
cator is limited to some chosen
value. The limiter can follow or
precede the linear amplifier; for
convenience it usually precedes
the amplifier and does, in fact,
usually involve merely the cutoff
bias of the first amplifier tube.
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amplifier stage. In this condi- Fra. 12:6~—Sjgnal threshold power in
tion, however, as soon as the c-w  Froeepes of o interference. - Direct coupling
interference produces a d-¢ second-

detector voltage sufficient to bias the amplifier tube to cutoff, i.e., to the
assigned limit level, nearly all signal information will belost. Signal infor-
mation will occur only for signal pulses out of phase with the interference
and of an amplitude approximately equal to that of the interference. It
is only under this condition that the second-detector voltage will be small
enough to permit conduction in the first amplifier stage and hence make
possible the conveyance of signal information. The signal is recognized on
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the A-scope by a negative deflection from the baseline. Itis to be expected
that for very large intensities of ¢-w interference the signal will make its
appearance only for values of signal nearly equal to the c-w voltage.
This is actually found to be true; Fig. 12-6 shows an experimental curve
obtained with a direct-coupled video system. The signal is seen in the
unshaded area to the left of the line and is not seen in the shaded area.
The ordinate in this diagram represents the signal power in decibels
relative to the receiver noise power; the abscissa represents the c-w
interference power in decibels relative to the receiver noise power. Asis
shown in the diagram, for large values of c-w interference power the
threshold signal power is almost equal to the c-w power.

It 1s clear from Fig. 12-6 that a relatively small amount of c-w inter-
ference is enough to remove virtually all traces of the signal, a result of
the saturation, or limiting, in the receiver. (This limiting, we have
already seen, is necessary to prevent defocusing, or blooming, on intensity-
modulated indicators.) Indeed, even with the A-scope, the limiting
voltage level, in terms of noise level, cannot be made indefinitely large; in
the best designs a value of perhaps 100 can be realized. The problem is,
then, to avoid limiting for the e-w voltage and yet to maintain the proper
limit level for pulses. The solution to this problem is fortunately simple:
A high-pass filter, shown schematically in Fig. 125, is employed between
the second detector and the video system to pass the major part of the
important pulse frequencies while removing the deleterious d-¢ term due
to the c-w interference. If this is done before limiting, virtually no signal
information will be lost. If a linear detector is used, the resulting signal
and noise level will be relatively unaffected by-the interference. A
quadratic detector is much less favored because of the interference-
dependent levels of signal and noise, which have been mentioned.

Since the d-c term arising from the c-w interference is the main diffi-
culty, it could in principle be removed by an RC-filter, even though the
1-f cutoff were set to a value of a few cycles per second. This, however,
is true if the video amplifier uses no d-c restorers. (D-c restorers prevent
the coupling condensers from being charged by pulses of polarity opposite
to that of the conventional video pulse.) Ordinarily, however, a large
pulse of oppostte sign, i.e., pulse and c~w interference out of phase, will, by
means of d-c restoring action (possibly caused by grid current in one of the
amplifier tubes), reinstate the d-c potential on the coupling condenser,
thereby nullifying the action of the filter. For this reason a high-pass
filter, whose 1-f cutoff is perhaps 1/27, where 7 is the pulse length, is usually
preferred. Strong pulses will not affect the filter operation for subsequent
desired pulses, nor will an appreciable increase of threshold signal be
required in the absence of c-w interference. Furthermore, should the
c-w interference be slowly modulated in amplitude, the high-pass filter
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will successfully remove the slow modulation components as well as the
d-c term.

It is desirable at this point to consider briefly the action of a high-pass
filter in receivers that are supplied with a ‘‘gate’” and that subsequently
employ a third detector (see Chap. 2). If the “gating” is done in the i-f
amplifier, the operation of the gate on the c-w voltage will obviously
convert the d-c¢ second-detector output to pulses. The high-pass filter
will “differentiate” these pulses in the same fashion as desired signal
pulses. To avoid this added difficulty in discernibility the gating should
be done in the video section after the high-pass filter; in this way the RC-
filter will remove the c-w voltage before it can cause a ‘“‘gate pulse.”

The use of a high-pass filter in the video system can successfully
eliminate video saturation provided a linear second detector is used.
With a quadratic detector, on the other hand, the rise in signal and noise
amplitudes due to the interference voltage is usually sufficient to cause by
itself serious video limiting. Therefore, whenever c-w interference is
expected, as has been repeatedly emphasized, a quadratic detector should
not be used.

Even when a suitable high-pass filter and linear second detector are
used, serious limiting effects may be noticeable in the receiver. These
are all traceable to saturation in the i-f amplifier. The next section con-
siders what methods can be employed to alleviate this situation.

12.3. Intermediate-frequency Overloading.—When an i-f amplifier
is subjected to strong c-w interference, several undesired effects may be
encountered. For example, the entire amplifier may be thrown into
oscillation; this phenomenon, however, is usually due to inadequate
shielding and filtering, a condition generally easily remedied. Neverthe-
less to avoid this difficulty special precautions with regard to amplifier
stability must be taken. Nearly all amplifiers are considerably more
unstable in the presence of strong c-w interference because the various
tubes are forced to operate in regions of higher mutual conductance. It
is perhaps easiest to recognize this form of instability by obtaining a curve
of the kind shown in Fig. 12-7. In this figure the curves indicate the
threshold signal power as a function of c-w interference power. A stable
amplifier yields a monotonic curve; irregular behavior usually denotes
instability. The latter condition is depicted in the first curve of this
diagram; the second curve shows the result when no instability appears.
This type of plot is one of the best criteria of receiver stability in the
presence of c-w interference.

It will be noticed, however, that in Fig. 12-7 even though the receiver
is made stable and video saturation is eliminated by the use of a high-pass
filter, ultimately a large increase in signal threshold occurs. The knee of
the curve 1s observed always to occur at the point where receiver noise is
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no longer visible on the A-scope. What appears to happen is simply a
reduction in the ‘“pulse gain,” that is, the incremental gain, of the
receiver. Eventually this pulse gain of the receiver turns out to be
approximately inversely proportional to the c-w in’erference power. In
_general, all i-f amplifiers exhibit this behavior; the saturation properties
of the amplifier can be measured either in terms of the knee of the curve
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F1g. 12-7.—Signal threshold power in presence of c-w interference. High-pass video
coupling.

or in terms of the ratio of interference to pulse power in the region above
the knee of the curve. Obviously, in comparing receivers standard
conditions must be used throughout.

Many factors contribute to i-f saturation. Before these are con-
sidered, however, a brief calculation will indicate why the kind of results
shown in Fig. 12-7 need not be surprising. For an unchanged gain over
the range of ¢-w power indicated on the abscissa, let us roughly calculate
the undistorted output power required of the i-f amplifier. Let us assume
that in the absence of c-w interference, the average noise level at the
second detector is about 1 volt, measured across 1000 ohms; this is a
fairly representative figure. An unchanged gain for a c-w power 100 db
above this level would require a continuous power output of 107 watts from
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the second detector, or more than ten times the output power of the most
powerful present-day broadcasting transmitter. Thus the power-output
capability of the i-f amplifier and second detector is an important
criterion. In general, the gain reduction observed in an i-f amplifier
subjected to c-w interference is caused either by plate saturation in the
amplifier tubes or by grid loading or by both. Intermediate-frequency
grid conduction loads the preceding i-f stage, hence reducing its gain.
Because of transit-time effects i-f loading can easily occur without d-c
grid current.

Two types of amplifier gain have been mentioned. The conventional
gain is defined by the c-w output voltage divided by the c-w input
voltage; the “pulse gain,”’ by the output pulse signal relative to the input
pulse. At first glance these two definitions of gain might appear to be
identical. The circuits can be so arranged, however, that the “pulse
gain” is far higher than the c-w gain—by automatic biasing of the i-f
tubes in accordance with the c-w power so that only the very tips of the
c-w voltage oscillations appear in the conduction region of the tube. In
this way the incremental gain of the amplifier is almost maintained, while
the c-w gain is reduced to unity. The foregoing procedure is illustrated in
Fig. 12-8. In the conventional scheme strong c-w oscillations swing the
tube over the entire characteristic; the output voltage will be saturated,
containing no signal intelligence. If automatic biasing is used, however,
only the tips of the i-f input voltage wave appear in the operating region
of the tube and signal intelligence appears in the output voltage wave.
Automatic biasing can easily be made to eliminate plate saturation and
grid loading entirely. It does not, however, maintain pulse gain
unchanged because the duty ratio or ‘“mark-to-space” ratio in the plate-
current impulses is reduced. Figure 12-8 shows that if strong c-w inter-
ference is encountered, the plate-current impulses, while still changing
amplitude in accordance with the signal by an amount that is independent
of c-w power, become very thin ‘“spikes” whose width depends (inversely)
upon the c-w power. The i-f components of these current impulses
falling within the i-f pass band, therefore, diminish as the c-w power ig
increased. In spite of this duty-ratio factor, however, automatic biasing
can greatly improve the operation of a receiver. In Fig. 129 three
curves are shown, all of them taken with the same receiver and under the
same standard conditions. The first curve was obtained with no i-f
biasing and no video high-pass filter; the second curve shows the improve-
ment afforded by the use of the high-pass filter. These two curves are
the same as those shown in Figs. 12:6 and 12-7. The third curve shows
the very substantial improvement brought about by automatic biasing
of the i-f amplifier. The automatic biasing is accomplished by means of
the tnstantaneous aulomatic gain control circuit, or JAGC, of Fig. 11-3 and
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described in Sec. 11-4. It is of particular significance that this circuit,
developed primarily for the prevention of saturation by clutter, is so
effective in its suppression of c-w interference effects
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F1G. 12:8.—Intermediate-frequency waveforms illustrating automatic biasing. (a) Wave-
forms without automatic biasing; (b) waveforms with automatic biasing.
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Fre. 12-9.—Signal threshold power in presence of c-w interference.

Besides automatic biasing, rejection filters in the i-f amplifier can be
used to reduce the effects of c-w interference. These filters are designed
to provide infinite attenuation at some adjustable frequency made, in
practice, to coincide with the frequency of the offending c-w interference.
A typical circuit of such an infinite-rejection filter is shown in Fig. 12-10.
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In the absence of the variable resistor shown, the circuit is simply a
conventional ‘“‘wave trap’’; the variable resistor may, however, be
adjusted to provide infinite attenuation at the

resonant frequency. Its effect is to compen- .
sate for the coil losses in the resonant eircuit.!

In practice, the infinite-rejection filter is ‘7Put .

. . . . voltage Output

not satisfactory, especially for receivers in the voltage
microwave region. The principal difficulty is
the necessity for continual frequency adjust- o— —1- 0
ment. Furthermore, even though the fre- =

F1G. 12:10.—Infinite-rejection

quency were properly adjusted, it is rare to find i

a source of c-w interference whose stability is
adequate to “stay in the notch.” Usually I-f sidebands are present that
are not properly attenuated by the filter.

12-4. Dependence of Threshold Signal upon C-w Interference Fre-
quency.—The effects of c-w interference have been briefly discussed,
both in the region where no saturation occurs and in the region of video
or i-f saturation. These effects have been treated largely for on-fre-
quency interference, however, and for adequate video bandwidth. In
this section a theoretical analysis will be attempted of the effects con-
nected with other interference frequencies and video bandwidths. The
analysis will be carried out with the assumption of no overloading; the
variables with which we are concerned are therefore (1) the c-w power, (2)
the video bandwidth, and (3) the difference between the c-w and signal
frequencies f., — f. For simplicity’s sake, it will be assumed that the
signal frequency is centrally located in the i-f pass band? and that the i-f
pass band is symmetrical and Gaussian in shape. Assuming in addition
a square pulse shape, the signal can be represented as

3 T
() = Ssin (2rfit +6)  for il <5

0 otherwise,
while the continuous wave can be written as
E(t) = E sin 2nfat + 00).
The total input is the sum of the signal and the c-w voltages and can be
written in a form analogous to Eq. (1) of Sec. 7-2:
Sia(t) = S@) + E@) = ao(t) cos 2xfit + Bo(f) sin 2xfd,

tA. M. Stone and J. L. Lawson, “Infinite Rejection Filters,” J. Applied Phys.,
18, 691 (1947). See also A. M. Stone and J. L. Lawson, “Infinite Rejection Filters,”
RL Report No. 72-6, June 1, 1943; A. M. Stone, “‘A Note on Pulse Distortion by
Rejection Filters,” RL Report No. 422, Sept. 16, 1943.

2 In the notation of See. 7-2 this means that f, is equal to the carrier frequency f..
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where
Esin [27(fos — f)t + 8] + Ssin 8, for || < 2
ag(l) = 2
E sin 2x0(for — fo)t + 0.0) otherwise,

E cos 2n(fow — f)t + 6.0] + S cos b, for |¢| < 5
Bo(t) = ' 2
E cos [2r(foo — fo)t + 6.0] otherwise.

If we assume further that the i-f bandwidth B is much larger than 1/7, so
that the pulse will be practically not deformed, we obtain for the output
of the i-f amplifier

Sour(t) = a(t) cos 2xft + B(t) sin 2xf.d,

where
E exp [ - %B:—f*)z] sin (27 (oo — F)1 + 0]
at) = 4+ S sin 6, for |t < %; (1a)
E exp [— W] sin (20 (foe — fo)t + 6cu]
otherwise,
E exp [— ﬂB:—fﬂ 008 (27 (fow — £t + O]
B = + S cos 8, for || < %, (1b)
E exp [ - (&‘Bz_—f‘y] €08 |27 (fow — fo)t + 0.
otherwise,
and ¢ = 1.18.

As in the previous sections of this chapter, for the case of actual
interest, the original c-w power is much larger than either the signal or the
noise power. Assuming a linear second detector, the detector output of
the c-w plus signal plus noise will be a nearly Gaussian distribution of the
form given by Eq. (7-13a) and with an average value

o[ - 0]

Bz
F= (a4 g% ={ +Scos(2r(f — St + o forff < ; @)
E exp [— a’(fLBz—fs_)z] otherwise,

where ¢ = 8., — 6, and where terms proportional to S? have been
neglected. One sees from Eq. (1) that the average value of the detector
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output will oscillate inside the pulse because of the beat frequency
between the c-w and the signal. In addition the average value 7 will
vary from pulse to pulse, because the phase difference ¢ will vary and will
assume any value between zero and 2x. Clearly, as a result of this phase
fluctuation, the introduction of the signal will only widen somewhat the
original Gaussian distribution without changing the average value
E exp [—a*(foo — f2)?/B?. Because of these reasons the detectability cri-
teria of Sec. 7-3 are not applicable, and to proceed further additional
assumptions have to be made.

First, we shall consider only the case of a very narrow video band-
width; for this case the variations of » inside the pulse will not be signifi-
cant. Therefore for the detection of the signal only the average value
of r over the pulse length 7 will play a role. This leads to

@(fow — £ S
'E“p[‘ B ]+2ﬂﬂw—ﬁﬁ

= {sin [r(foo — fi)7 + @] + sin [x7(feo ~ f7 — o}
with signal, 3)

2 — 2
E exp [— W] without signal

Second, in order to take into account the phase fluctuations, we shall
assume that the observer will average over one-half of the widened (hut
symmetrical) distribution resulting from the variations of the phase .
All values of ¢ will be assumed to be equally probable, or in other words
the probability for the phase to be between ¢ and ¢ + de will be assumed
to be d¢/2x. With all these assumptions, the quantity that determines
the detectability of the signal and that we denote as in Sec. 7-3 by
fsypn I8 given by

_ _ 2 2r dsa [ (Tcu s rcu)]
Tsyn = E\/W_/(; / dx z exp { 271/ }’ €y

where 7.4, and 7., are the two values of the average deflection given by
Eq. (3). The integrals in Eq. (3) cannot be carried out exactly, but one
can develop in powers of S?/2W; keeping only the first two terms, one

obtains
kW 82 [sina(for — fo)r ]2}
P Jw"* [ﬂm—m ®)

As in Sec. 7-3 we will assume that the detectability of the signal will
depend on the ratio of (fs.» — 7») to the fluctuation of the output when
no signal is present.

The assumption of a very narrow video bandwidth b implies a further
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reduction in the output signal by the familiar factor tr. Hence one
obtains

_ S%r 2w [sm (frw — f)T]

Fogw — v =
S+N N T W(frw_ 8

The fluctuation of the video output in the absence of the signal can be
computed by means of Eq. (7-20b). The o's and g’s there are given hy
Eq. (1) with S = 0. Since EF > W, the main contribution to the con-
tinuous spectrum of the linear detector output comes from the term
proportional to p. Retaining only this term, one obtains for the correla-
tion funection of the c-w plus noise

(6)

_— a1 + Blﬁz
rirs = Wells = ) e (et + AT
= Wp(t: — £1) 08 [2x(for — fo) (t2 — 1)), M

from which follows the spectrum in the usual way. Using Eq. (7-21) and
(7-26) of Sec. 7-2, one finds for the spectrum of the linear detector

Gu(f) = WlQ(few — fi + ) + QUew — fo = )], 8)

0 = 2 pew (- 20) ©)

is the normalized spectrum of the intermediate frequency, which we had
assumed to be of Gaussian shape. For a narrow video bandwidth b the
fluctuation of the video output will be simply G.(0)b. Using again the
notation of Sec. 7-3, we obtain therefore, from Egs. (8) and (9) for the
fluctuation of the video output, the expression

— (F0)? = \F 208 exp [— —~2a2(f622_ fS)ZjI' (10)

In analogy to the deflection criterion of Sec. 7-3, we shall assume that the
minimum detectable signal power is determined by the equation

where

-_Ts+4v — TN = C, (]l)
[ — ()
where C is a constant, which may still depend on the observation time.
Combining Eqgs. (6) and (10), one then finds for the minimum detectable
average signal power

_ S 40°C (maB\* Lgﬁ[ T(fow — fI7 ]2 ,
Poin = 9_0 = —90 (Tb‘) (27r)’€ F——sin T(fcw _fs)T ’ (12‘

where in order to put the dependence of Pui on the bandwidth B in
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evidence we have expressed W in terms of the noise power o2 before the
intermediate frequency and the bandwidth B according to

te ML B
P g2 g _ 7D T
H a /_m dfe p \/;

Before discussing Eq. (12) and comparing it with experiment, one should
remember that Eq. (12) holds only if (f.. — f,) < B, since we have
assumed that the c-w power is large compared with the signal and noise
power. For very large detuning, one may clearly consider the c-w to he
absent. In this case the average of the linear detector output is
[see q. (7-14a)]

N 1. 8\ W S?
ron = (b= )= (14 5)

if §*/2W « 1. For a narrow video bandwidth one obtains therefore,

instead of Iq. (6),
W 8%
Tspn — Ty = \/% % (13)

TFor the continuous noise spectrum of the detector output we get, using
Eqgs. (7-20a) and (7-26) of Sce. 7-2,

[t

Gu(f) = - dfy QU + f1)

]

— - arf?
\/7r all —ﬁ'

TR €
The fluctuation of the video output with which (13) has to be compared is
as before (7.(0)b or

VT alWh

= (v = ~iB

(14)
Tor large detuning, the minimum detectable average signal power will
therefore be given by

Prats) =557 (W;TB ) ()7 (15)

These results can be compared with some experiments performed by
A, L. Gardner and C. M. Allred with apparatus specially constructed
for this purpose. TIn these experiments the injected c-w power was 40
db above receiver noise power, the i-f bandwidth was rather wide
(Br = 2.2), and the video bandwidth was quite narrow. It was first
noted that with the frequency of the continuous wave in the middle of
the 1-f pass band (on-frequency interference) the signal threshold was
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about 3.5 db higher than with no continuous wave present. This can be
compared with Egs. (12) and (15), from which follows

Brin(0)

Pun(w) (8x%)%, (16)

or 4.75 db. Detuning the continuous wave increases the signal threshold
still further until the detuning has gone so far that the continuous wave is
practically not present any more. The experimental results are shown

TaBLE 12:1.—IEXPERIMENTAL AND THEORETICAL VALUES OF SIGNAL Loss witH
DEeTUNING

Signal threshold, db, rela-
feo — s tive to threshold at

fcw —fﬂ =0

Experimental | Theory*
0.5 5.8 3.6
1 13.5 o
1.5 11 10.75
2 15 o
2.5 9 10.3
3 5
3.5 0
4 —2.5
4.5 -3.5

* For (few — fa)7 larger than 2.5, Eq. (12) is no longer applicable; hence, no theoretical values are
given.

in Table 12-1 together with the theoretical values calculated from the
equation

Prn_ _ I 1w — S ]2
P ¢ [m : (17)

which follows from Eq. (12). The agreement between theory and experi-
ment is as good as can be expected. The theoretical infinities for integral
values of (f.. — f,) are due to the neglect of the terms proportional to
S§?in Eq. (2). However, the experiments give exceptionally large values
for the signal threshold for these values of (f., — f,)r, so that the first-
order theory seems qualitatively justified.

In the case of a wide video bandwidth it is not the average value but the
envelope of the pulse that is significant. Since the envelope is not
sensitive to detuning, no increase in signal threshold with detuning is
expected. This is confirmed by experiment. An experimental curve
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showing the effect of detuning when a relatively wide-band video system

is used is given in Fig. 12-11. Tt

can be seen that the signal thresh- § |- g . 0 r !
old varies little and remainsafew == o -5

decibels above the value when no E: 2 10 E=No cw — T~ |
continuous wave is present. It % 5% signal

is fortunate that a great improve- & = = ~13 o = o e
ment in signal perception can be Detuning of (£ =/;)

obtained by employing a video
system whose bandwidth is ap-
proximately as large as the if

Fic. 12:11.—Signal threshold power vs.
the detuning of the c-w signal with a wide
video amplifier. The threshold in the
absence of c-w interference is indicated.

bandwidth, since this condition is
desirable for proper signal perception even in the absence of c-w interfer-
ence (see Chap. 8).

THRESHOLD SIGNALS IN
NOISE-MODULATED CONTINUQUS-WAVE INTERFERENCE

It has just been shown that given proper video bandpass charac-
teristics and absence of i-f or video overload, the effect of unmodulated
c-w interference is not very serious. Even for very large amounts of
interference a maximum rise in signal threshold power of only 3 or 4 db
occurs. The essential reason for this is that the interference contains no
fluctuations which would tend to mask the signal. It is almost an accident
that any deleterious effect occurs at all; the experimentally observed
values come about principally because of a change in form of signal and
noise brought about by the interference. The next step is to consider
interference effects produced by modulated c-w power. That an infinite
variety of modulating functions exist is clear; in the following treatment,
however, discussion will be limited to ‘“noisy” functions, that is, those
which are nonrepetitive and of a statistical nature. The random nature
of noise has been shown repeatedly to be principally responsible for the
efficiency with which 1t is able to mask signals; therefore we can expect
that “noisy” interference will most readily mask desired signals.

Noisy interference can be produced in a variety of ways; perhaps the
most obvious way is simply to amplify r-f thermal noise. The properties
of this type of noise have been described in Chap. 4; it has a uniform power
spectrum (in which the frequency components are unrelated) and a
Gaussian amplitude distribution. From an interference point of view
the problem has already been solved; the noise has the same character-
istics as internal receiver noise whose effect on signal threshold power has
been described in Chaps. 8 and 9.

Radio-frequency thermal noise interference of large power is usually
hard to produce because of the usual difficulties with r-f amplification;
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consequently, it is generally expedient to modulate an r-f c-w carrier with
an appropriate video noise function. This modulation can be applied to
the carrier amplitude, frequency, or phase. Frequency and phase
modulation are shown in Chap. 2 to be similar; one can proceed from
frequency to phase modulation and vice versa by the use of appropriate
filters. We may therefore consider amplitude and frequency modulation
as the two fundamental operations. Although it is quite possible to
consider in detail the effects of each type of modulation, only the a-m
case will be presented in the following discussion.

12.5. Continuous-wave Interference Amplitude Modulated by Noise.
Let us assume for simplicity that the video-voltage noise function pro-
duces corresponding changes in the r-f amplitude within the limitations of
the r-f amplifier. Ideally these limitations are felt in two ways: (1) The
r-f amplifier has a minimum power output (zero) that the modulating
function must not try to cross, and (2) the r-f amplifier has a definite peak
output-power capability. These limitations mean that any of the noise
functions which we are likely to consider will not be immediately appli-
cable to modulation; these functions must first be passed through limiters
to prevent overdriving the r-f amplifier on large noise peaks and to prevent
cutoff of the r-f amplifier on large negative peaks. This limiting action
may, of course, be provided by the r-f amplifier itself; however, in com-
puting the spectrum and amplitude distribution of r-f noise it is conven-
ient to think first of limiting the video noise function, then of applying
purely linear amplitude modulation to the r-f carrier.

The problem confronting us, then, is essentially the c-w interference
case discussed in Secs. 12-1 through 12-4, except that in addition to the
¢-w carrier we now must consider the r-f noise sidebands. The properties
of these noise sidebands depend upon the properties of the video noise
function as well as on the degree of limiting, or “clipping.”” That this
problem is complex is proved by the complicated effects of even the
unmodulated c-w carrier. Consideration of the general case will not be
attempted. Discussion will be limited to the behavior of the system
under the following set of conditions:

1. The receiver is fitted with an adequate i-f filter and has an adequate
video bandwidth.

2. The noise modulating function is to be video thermal noise with
Gaussian amplitude distribution and bandwidth defined by b..
This bandwidth is ordinarily determined by the video amplifier
characteristics.

3. The limiting, or clipping, is symmetrical about the average value of
the Gaussian noise function. This implies that the r-f amplitude
is modulated about a value equal to one-half the peak value.
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With these restrictions in mind we are in a position to discuss qualita-
tively the effects to be expected. The signal threshold power will depend
essentially on three factors: (1) the amount of receiver noise present, (2)
the r-f interference carrier, and (3) the spectrum and amplitude of the
interference noise. The first two factors have already been discussed
in Chaps. 8 and 9 and in Secs. 12-1 through 12-4; let us therefore consider
the interference noise itself.

We shall be concerned with two properties of the interference-noise
sidebands: (1) the power spectrum that incidentally will give the total
sideband power relative to the carrier power and (2) the guality of the
noise, which must be measured in terms of the efficiency with which it s
able to mask a desired signal. The first property has been calculated
by Van Vleck.! He has assumed symmetrical limiting, or clipping, of
the video noise function. If one defines the fractional modulation result-
ing from the noise as m, where m is the ratio of rms video noise voltage
before limiting to the limiting level itself, then Van Vleck has shown that
clipping has little noticeable effect on the spectrum for values of m less
than unity. Furthermore, the total noise sideband power in terms of
the carrier power is given simply by $m? again for values of m less than
unity. TFor values of m greater than unity the spectrum is modified
appreciably by the clipping, and the total noise sideband power is not a
simple function of m. Where m becomes infinite, a condition Van Vleck
describes as ‘“super clipping,”’ he has shown that the total sideband power
is just equal to the carrier power. Representative spectra and amplitude
distributions for m = 1 are shown in Fig. 12-12, In this diagram the
video noise function is assumed to have a uniform spectrum out to the
bandwidth limit b,.

In what is to follow the region of particular interest is that for which
the fractional modulation m is less than unity. Therefore we can easily
calculate the total noise sideband power and its spectrum from the modu-
lating video bandwidth b, and the fractional modulation m. The
problem might appear at this point to be nearly solved; this would be
true if one knew precisely how efficiently the clipped interference noise
(compared with unclipped noise) masks the desired signal. Unfor-
tunately this property of the interference noise ig not easily susceptible
to calculation. Figure 12-12 makes it clear that the noise-amplitude
distribution is profoundly altered by the clipping. The apparent “ceil-
ing” produced by the limiting action provides a more or less definite
amplitude baseline over which a relatively small signal can be noticed.
Therefore the ceiling produces a qualitative change in the noise that may

1J. H. Van Vileck, ‘“The Spectrum of Clipped Noise,” RRL Report No. 411-51,
July 21, 1943.
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outweigh considerations of total noise power. The ceiling effect, as
shown in Fig. 12-12, is dependent upon the sharpness with which limiting
takes place and upon the fractional modulation m. This would also be
the ceiling effect as seen on the A-scope provided the receiver r-f band-
width B were sufficiently large to pass the entire spectrum shown in Fig,
12-12. Tf the receiver i-f bandwidth B is less than the total interference-
noise bandwidth 2b.., however, the output noise of the receiver will lack
some of the frequency components needed to reestablish the well-defined
ceiling; therefore the ceiling effect will be less pronounced than that shown
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(a) No limiting on clipping. (b) Limiting at rms value (m = 1).

F1G. 12-12.—Amplitude and frequency distributions for clipped noise.

in the diagram. We may expect the ceiling effect to vanish completely
when B <« 2b,. Therefore according to this reasoning the ceiling effect
depends upon two parameters, the fractional modulation m and a quantity
B equal to 2b./B, that is, the ratio of interference-noise bandwidth to
receiver i-f bandwidth. A clipping factor F. is introduced, representing
a measure of the loss in interference-noise effectiveness caused by clipping.
This factor is most conveniently expressed as the logarithm of the ratio of
actual interference-noise sideband power to the equally effective unclipped
noise power. A clipping factor F. of 3 db therefore represents a condition
where the clipped noise power falling within the receiver i-f bandwidth is
equivalent in effectiveness to unclipped noise of approximately one-half
the power. The clipping factor F.(m,3) is most readily determined by
experiment; its limiting value when m is small and 8 is large approacics
0 db.
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In an elaborate series of experiments Stone! has shown that the fore-
going conclusions appear to be valid; he has obtained empirical values
for the clipping factor as a function of m and 8 and has plotted them in a
most convenient form. This plot 10

Q

is reproduced in Fig. 12-13; m is 08 _§’ o

. g 7 ,\b )
shown as ordinate, and 8 as ab- QY o /
scissa. The contour lines repre- 06
sent different clipping factors; m | curves notZ/ 3 /
these lines do not appear in an area 0.4 | reliable in 2 /
near the left-hand edge of the dia- this region &
gram because in this region self- §
consistent results were not
obtained. Stone’s results, how c'201 1 10 00
ever, clearly show the clipping fac- )
tor to be extremely important, Fic. 12:13.—Fractional modulation m as

especially when the fractional a function of 8 = 2b./B for various values of
modulation exceeds unity and the the clipping factor Fe.
interference-noise bandwidth 2b, is comparable to the receiver i-f band-
width B.

For large values of interference power the rise in threshold signal
caused by the interference can be evaluated as follows:

1. Calculate the total interference-noise sideband power falling in the
receiver i-f bandwidth in comparison with receiver noise itself.
The calculation is made from a knowledge of the ratio of the inter-
ference-carrier power to the receiver-noise power, the fractional
modulation m, and the value of 8, which is the ratio of total
interference-noise bandwidth to receiver i-f bandwidth. This
interference-noise power (in terms of receiver noise power) is most
conveniently expressed in decibels.

2. Add about 3 db to Item 1 to account for the effect of the carrier.

3. Correct for the clipping factor F. by means of the curves in Fig.
12-13. This correction in decibels is to be subtracted from Item 2.

4. The final answer represents the increase in signal threshold power
caused by the interference.

This procedure appears to be valid as long as m < 1 and as long as
the interference is strong compared with receiver noise. It is also
assumed that no overload or saturation effects occur in the receiver; this
can be assured by methods discussed in Secs. 12-2 and 12-3.

One additional point is worth mentioning. For a fixed interference-
noise bandwidth the clipping factor F. is a function of i-f bandwidth B.

L A. M. Stone, “Synthetic Radar Signals in the Presence of Jamming,” RL Report
No. 708, June 22, 1945,
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Therefore, in measuring threshold signals as a function of B, in a way
similar to that shown in Iig. 87, the smallest threshold signal energy will
be found at a value of Br somewhat /igher than the value determined for
receiver noise. A. M. Stone? has found that under certain conditions the
optimum value of Br could be shifted by a factor of as much as 3 or 4.
It does not appear, however, that this situation should alter the design
of receivers, for the wider bandwidth generally gives a greater opportunity
for offfrequency interference.

THRESHOLD SIGNALS IN PULSED INTERFERENCE

12.6. Description of Pulsed Interference.—In the first two parts of
this chapter an attempt was made to analyze the deleterious effects of
c-w interference even though modulated in amplitude by a complicated
noise function. Other forms of electronic interference exist, one of the
most common of which may be termed pu’sed interference. Here, the
interfering wave may consist of a train of r-f pulses whose repetition fre-
quency may or may not be constant and whose radio frequency and pulse
length may or may not correspond to that of the desired signal. In
radar reception, pulsed interference will very likely arise from other
near-by radar sets operating on nearly the same radio frequency. Such
interference will appear on the radar A-scope as a series of intense
saturated signals, which usually differ from genuine echo signals in their
nonsynchronized positions and in their relatively great intensities.
Because of the resulting fencelike appearance on the A-scope, the inter-
ference is usually known as ‘‘railing” interference. Several interfering
radar units produce several sets of interspersed railings whose relative
positions continually change. A discussion of railing interference and
methods of suppressing its effect is given in Sec. 12-7.

Because of the relatively large peak powers that can be produced with
pulse techniques the possibility of producing damaging interference by
this means should be considered. It can be shown that no power is
“wasted” in a carrier and that a “noisy” function can be produced by
random variations in the interval between successive pulses. The condi-
tions determining threshold signal power for this situation are discussed
in Sec. 128,

12.7. Railing Interference.—In railing interference one must consider
not only the effect of the main interfering pulse but also the trailing
interference echoes produced by near-by reflecting objects. These
echoes, though very weak in comparison with the main interference pulse,
may still be large enough to exceed a desired signal. In practice these
trailing echoes can be detected for perhaps 100 usec after the main pulse.

L Ibid.
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In spite of these trailing echoes there is generally a considerable period
during which the receiver is not affected at all by the interference; in
these time intervals signal detection can be maintained at nearly normal
sensitivity. For this reason railing interference of low-duty ratio does
not materially affect threshold signals; the effect of interference duty
ratio is to alter the fraction of time during which the signal may be seen.
In a sense this is equivalent to an alteration of PRF, shown in Chap. 8 to
have only a mild effect on threshold signal. According to this argument,
one would expect to find a rise in threshold signal power of 1.5 db when
the interference duty ratio is as large as 50 per cent. In actual practice a
somewhat larger rise in signal threshold power is obtained because one
does not completely neglect the time elements occupied by the inter-
ference. In an intensity-modulated indicator thé bright spots produced
by the interference are annoying and fatiguing to the observer; they are,
however, more of an annoyance than a real hazard to signal perception.
General methods of alleviating the pulsed interference effects consist
in causing the interference to operate some device that, for the duration
of the interfering pulse, desensitizes the
receiver or indicator. In this way there

is no perceptible indication of the inter- go
ference; the desired signals can be seen ;%
under nearly normal conditions in the free § E

intervals between interfering pulses. To

remove only the interference so that th.e Input Signal amplitude
desired signal still remains, one must uti- Fie. 1214~ -Rosponse charac-
lize some special characteristic of the teristic of typical pulse-amplitude
. diseriminator.

interference. The three common charac-

teristics of the interference that may differ from the characteristies of the
desired signal are (1) the amplitude, (2) the radio frequency, and (3) the
shape or length. These three characteristics suggest corresponding meth-
ods for interference suppression.

Amplitude Discrimination.—Several devices have been developed to
provide pulse-amplitude discrimination and selection. All of them have
operated on the same principle, but the applications to receivers have
differed. In all these devices a modification to the over-all receiver
response characteristic has been made. The resulting characteristic is
similar to that shown in Fig. 12-14: the response to input voltage larger
than a given input amplitude is made zero. Thus if the receiver gain
is so adjusted that all desired signals are of a size to give a satisfactory
output, all interfering pulses of high intensity will be eliminated.
Although it is true that an. interfering pulse occurring simultaneously
with a desired signal pulse will remove the signal, the fraction of time in
which this happens is only the duty ratio of the interfering pulse.
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The response characteristic shown in Fig. 12-14 can be produced in a
number of ways. The normal video output of the receiver can be
“swamped’’ by a video signal of opposite polarity, which at low signal
level is made inoperative by an appropriate bias voltage. This swamping
action can, if desired, be accomplished directly in the output of the
second detector; in this case it is derived from a biased second detector
of opposite polarity. Perhaps the simplest technique, however, is to
use a video signal derived from one of the i-f stages to bias the grid of the
following i-f stage; in this instance a strong input signal will bias the i
stage to cutoff, and no output voltage will occur.

The principal difficulties with any of these schemes are of two kinds.
(1) The desired signals actually have a large range in amplitude, and the
amplitude-selection ‘“‘slot” must therefore be made extremely wide.
Under these conditions satisfactory removal of railing interference is not
usually possible. (2) As was mentioned previously, railing interference
consists of an intense leading pulse followed by a train of reflection echoes
lasting for a number of microseconds. These trailing pulses, usually of
much longer duration than the original interfering pulse, are nearly
always of the same general size as the desired signal pulse and cannot
therefore be removed by this procedure. These two difficulties can be
overcome by a slightly different form of interference suppressor developed
by Lawson. This suppressor, designed to combat railing interference,
was required to remove completely the railing pulse together with its
trailing echoes, without removing any desired (radar) pulse.

To remove the railing pulse and echoes, a ‘‘blanking gate” of con-
trollable length was supplied; this gate was initiated by the interfering
signal and could then be made long enough to remove the trailing echoes
as well as the interfering pulse. To make sure desired radar pulses were
not removed, a new system was devised. It is clearly desirable to
trigger the gate from video signals in which the interfering pulses are
enhanced by comparison with the desired signals. This enhancement
can be assured by receiving the interfering pulses on a separate non-
directional antenna. The scheme offers no improvement if the inter-
ference comes from the same direction as the desired signal; otherwise
the improvement is proportional to the directional gain of the receiving
antenna used for signal reception (radar antenna).

In spite of the separate nondirectional antenna and interference
receiver the main transmitted radar pulse and close radar echoes will be
strong enough to trigger the blanking gate unless a gate ‘““deadener” is
applied. This deadener can take the form of a multivibrator triggered
from the main radar pulse, preventing operation of the blanking gate for
a certain time after the transmitted radar pulse. This time can, of
course, be controlled by the multivibrator time constant and can be
adjusted so that the interference suppressor removes no radar echoes.
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The interference suppressor system is shown in block form in Fig.
12-15. As shown in this diagram the interference receiver is of the
superheterodyne type, using the same local oscillator as the signal
receiver; this connection is desirable to obtain comparable sensitivity
and selectivity in the two receivers. The other elements shown in this

Directional Video video
radar »}— Radar Delay | ,_ | panking |—>—
‘antenna receiver line unit output
Local
oscillator
N?ﬂ"g:';i‘:ggg:' Interference Blanking | _ | Deadener | Radar
antenna receiver gate gate trigger

Fig. 12:15.—Elements of interference suppressor.

diagram are self-explanatory, with the exception of the delay line. The
actual production of the blanking gate requires a small but finite time;
the purpose of the delay line is to assure arrival of the blanking gate
before the interfering pulse arrives through the signal channel. In this
way all traces of the interference can be removed.

(@) PPI, 100-mile sweep; normal operation (b) PPI, 100-mile sweep; suppressor in
operation
¥iG. 12:16.—Photographs illustrating the performance of the interference suppressor.

Typical results that can be obtained by the use of this interference
suppressor are illustrated by the PPI photographs shown in Fig. 12-16.
In these photographs the PPI sweep length represents 100 miles. The
first photograph shows railing interference striations normally present as
a result of the presence of many near-by radar sets, one of them located
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less than 100 ft away. Radar ground signals, i.e., signals from targets
on the ground, are visible out to ranges of about 20 miles; some thunder-
storm patches can be seen out to 90 miles. Several discrete aircraft
cchoes can be seen at various ranges.

The second photograph in Fig. 12-16 shows the great improvement
obtained by the use of the interference suppressor. It is true that some
railing interference is still visible, but nearly all the original annoying
interference is removed. These remaining spots of interference are
explained by inactivity of the suppressor caused by the blanking-gate
generator recovery time after a preceding interfering pulse. This
situation occurs when interfering pulses from two nonsynchronous

Response
Response

PAANE VAAN

Frequency —— Frequency —

(a) Unmodified frequency discriminator (b) Modified frequency discriminator
F1a. 12-17.—Frequency discrimination response curves.

transmitters nearly coincide in time and can be avoided by using a gate
generator with extremely short recovery time.

No radar echoes need be lost by the use of this device. Echoes may Le
lost with the pulse-length-selection devices to be described shortly because
a radar echo has a length that depends upon the nature and extent of the
target under surveillance.

Frequency Discrimination.—We can discriminate between desired
signal and interfering pulse by means of the radio frequency itself. The
easiest way 1s to enhance the response of the interference receiver shown
in Fig. 12-15 to off-frequency signals by using, for example, an ordinary
frequency discriminator with subsequent pulse rectification. The pulse
response of the over-all receiver to incoming pulses of various frequencies
will be as shown in Fig. 12-17a¢. In this arrangement no blanking of
(radar) echoes or interfering pulses exactly at the radar frequency will
occur. If, however, the response is altered as shown in Fig. 12-175, by
adding to the response indicated in Fig. 12-17a the output from the
unmorlified receiver, blanking of on-frequency interference can be effected.
The ratio of on-frequency interference to radar echo will be as high as in
the unmodified receiver; this ratio will increase for off-frequency inter-
ference, thus providing more complete interference suppression. Hence
frequency diserimination may be received as an additional aid and not as
an alternative scheme to amplitude diserimination.
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Pulse-shape Discrimination.—Radar echoes from discrete point
targets have the same shape as the transmitted radar pulse. It is
natural to inquire whether or not this information can be utilized to
reduce the effect of interference with a different characteristic shape or
even to reduce the signal threshold power in receiver noise. In the
following discussion the radar pulse will be assumed to be of rectangular
shape; the important “shape factor” is in this case simply the length of
the pulse. A circuit can be constructed that will satisfactorily pass
rectangular pulses of a critical length; pulses of a substantially different
length will be completely rejected.

-1 T>Ty+T,
Input pulse =

e e N e N e B

“Differentiated”

pulse(first input—! | j

. v_oltage to [_‘ U—
T,

coincidence circuit)

[}
1T
Second input
voltage to - I_l-

coincidence circuit L U

(A —
Output voltage from H

coincidence circuit

Fic. 12:18.—Waveforms illustrating pulse-length selection.

Let us consider the input video pulse of length 7 applied to a *“delay-
line differentiator,”” whose function is to add to the input voltage wave an
equal wave of opposite sign, which, however, is slightly delayed by a time
7. The output voltage from such a device will consist of two pulses,
each having a duration 7; equal to the slight delay in time previously
mentioned. These pulses will be of opposite sign and separated by the
original input pulse length 7; they have an appearance suggested by the
derivative of the input pulse. This two-pulse wave is next applied to a
coincidence circuit; the other input voltage to the coincidence circuit is a
replica of the two-pulse wave but reversed in sign and delayed by a fixed
amount 7o. The coincidence cireuit is of a type in which the output
voltage is the product of the two input voltages. With the arrangement
just described the output of the coincidence circuit will register a pulse
only if the original pulse length 7 is close to 7o; no output pulse will be
registered at all if + <7y — 7y or if 7 > 79 + 71 (see Fig. 12-18). The
preceding result can be formulated in mathematical terms. ILet the
mput video voltage function be represented by f(t). The output of the
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line differentiator will be given by the expression f(¢) — f(t — 71). The
voltage output of the coincidence circuit can then be expressed as

Eow = [f(8) = f(t = 7)I[=S(t = 70) +J(t — 71 — 7). (18)

If we now insert the value of f(¢), we can evaluate E,.. Let us assume
the input pulse to start at £ = 0, to end at ¢ = 7, and to have an amplitude
A. For this particular function one finds by means of Eq. (18) that

forrg <t <7471 Hrg =11 <71 <79

— A2
B = 4 forr <t <7+ m1 ifre <7 <7+ 71

} (19)

Thus the output pulse length within the proper interval is seen to be

simply 7, — |(r — 70)|; therefore if we represent the circuit response by

the output pulse energy, we obtain

the result shown in Fig. 12-19.

This diagram shows graphically

that the circuit is a pulse-length dis-

criminator whose selection proper-

. ties are determined by the delay

Th T Toth time 79 and 71. These delay times

Pulse length, 7 ) being easily adjustable, a wide

Fia. ciig;ﬁ?.;;fgiilﬁn; ls.fgoﬂg:eg‘ts}flfft“’" range of operating conditions. is

readily produced. Pulses outside

the interval shown in Fig. 12:19 are rejected completely; this property of

the pulse-length discriminator would appear to permit complete rejection

of an interference pulse of length substantially different from the desired
signal pulses.

In practice the rejection is not complete with respect to railing inter-
ference, nor is there the ideal response to all desired radar echo pulses
shown in Fig. 12-19. This apparent failure of pulse-length discrimination
is caused by two different effects. (1) Even though the input pulse to the
receiver may have a defined length 5, the output video pulse has a
different length, because of the finite rise time (or bandwidth) of the
receiver and the video limiting action. For a nonlimited pulse, the video
pulse length at one-half amplitude is approximately equal to the input
pulse length ; however, as soon as limiting sets in, the video pulse broadens.
For very large input signals the broadening will generally be sufficient to
causc complete rejection of the pulse. (2) The signals with which one
deals are not necessarily discrete pulses; the interference also does not
consist of rectangular pulses. In this event the desired signals will be
largely rejected and some of the interference will be passed. This
situation can be quantitatively calculated by using the proper voltage
function f(¢) in Eq. (18); the output voltage will then usually not be

Output energy
hPQ

[=]

o
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zero for arbitrary interference voltage functions. Nevertheless, in spite
of these difficulties, a pulse-length discriminator built by Ashby and
Neher! has proved to be of the same order of effectiveness as the amplitude
discriminator of I'ig. 12-18. In this particular pulse-length discriminator
the relatively narrow pulses from the coincidence unit were subsequently
lengthened somewhat to permit easy visibility; and to avoid the pulse-
broadening produced by limiting, a wide-band i-f amplifier was used.

The type of pulse-length discriminator just described is only one of
many forms of shape-discriminators that can be considered; nevertheless
it serves to illustrate the general effect expected. One can shape the
signal pulse in special ways; for example, a series of pulses is often gener-
ated with a fixed sequence of lengths and intervals. A suitable pulse-
shape discriminator can be made by using various appropriate delay
lines; this type of discriminator is usually called a decoder; that is, it
serves to decode the relatively complicated signal message. For any of
these decoders the response can be calculated for any input voltage
function by methods similar to that by which Eq. (18) was derived.

At the beginning of the discussion on pulse-shape discrimination an
interesting question was raised regarding the possibility of reducing
signal threshold power in receiver noise by the use of pulse-shape dis-
crimination. At first sight it would appear that pulse-length discrimina-
tion would permit one preferentially to select desired signals from noise
(which itself has no defined ‘“length’”). Unfortunately this does not
seem to be the case, at least in the region where signals are not larger
than noise itself. The reason is that when pulsed signals and noise
become mixed, the mixture distorts the signal shape. This distortion is
so severe that the pulse-length discrimination is of little value. In an
actual experiment by R. M. Ashby and J. L. Lawson the signal threshold
power measured on an A-scope was not perceptibly changed by the use
of a pulse-length discriminator. This result might be different if the
initial conditions were such as to cause the threshold signal to be con-
siderably larger than noise, but this case was not investigated
experimentally.

12-8. Randomly Spaced Interference Pulses.—In Sec. 12-7, a discus-
sion was undertaken of railing interference, characterized chiefly by
intense pulses of relatively low duty ratio. To combat the effects of this
interference some form of discrimination between interference and desired
signal is used to desensitize the indicator during periods of interference.
The free time between interference pulses is then used for signal observa-
tion. None of the interference-suppression methods proposed are suit-

!R. M. Ashby and L. Neher, “Pulse Lengths Sclector and Multiple Pulse
Decoder.” RI Report No. 917, Mar. 21, 1946.
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able when the duty ratio of the interference becomes high and where the
time interval between successive interference pulses becomes comparable
to the signal pulse length (strictly, the reciprocal of the i-f bandwidth).
In the limit where the interference pulse interval is extremely small
compared with the reciprocal of i-f bandwidth, the interference is-handled
by the receiver just like c-w interference; in such circumstances methods
for c-w interference suppression are often found helpful (see Secs. 12:1 to
12-4).

If the interference pulses are randomly spaced in time, one might
expect a relatively large rise in signal threshold power because of the
“noisy” appearance. This is only partially true. If the average pulse
spacing is large compared with the reciprocal of the i-f bandwidth, many
free intervals are available for signal detection. This form of inter-
ference is like railing interference and can be handled accordingly. If
the average interference-pulse spacing is small compared with the recipro-
cal of i-f bandwidth, however, the output of the receiver will show ampli-
tude noise fluctuations. This noise depends among other things upon
the function that determines the interference-pulse spacing; whatever
this function is, one finds the greatest similarity to nonlimited noise if
the reciprocal of i-f bandwidth is extremely large compared with the
average pulse spacing. For this condition the interference energy is
spread over a relatively great band; the fraction falling within the receiver
bandwidth is relatively small. Hence the interference is not generally
so effective as some other forms of noisy interference.




CHAPTER 13

THRESHOLD MODULATIONS FOR AMPLITUDE-MODULATED
AND FREQUENCY-MODULATED CONTINUOUS-WAVE SYSTEMS

13-1. Introduction.—In this chapter we shall discuss the problem of
determining the minimum detectable modulation for a-m and f-m c-w
systems. The problem has been investigated by Crosby! both experi-
mentally and theoretically for the case that the carrier power is large
compared to the noise power. Our main purpose is to extend the
theoretical results of Crosby and to show how the application of the
general methods of Chap. 7 lead to a unified treatment of the problem.
For a description of the main parts of the receiver we refer to Chap. 2.
For amplitude modulation only the superheterodyne receiver will be
considered, whereas for frequency modulation only the case of complete
amplitude limitation will be discussed in detail.

The modulation will be assumed to be sinusoidal, so that for amplitude
modulation the signal will be represented by

S4(t) = So(l + € cos 2xpt) cos 2nfct, 1)

where S is the carrier amplitude, f. the carrier frequency, p the modula-
tion frequency, and ¢ the fractional modulation (¢f. Sec. 2-1). The
spectrum consists of the carrier and the two sidebands of amplitude eS,/2.

For frequency modulation (¢f. Sec. 2-3) the signal is represented by

Se(t) = 8o cos (21rfct + %f sin 21rpt)- (2)

The modulation index ¢f./p will be assumed to be large, so that of the
sidebands (frequencies f. + np) only those which lie within the frequency
excursion interval have appreciable intensity. The half width of the i-f
amplifier will be assumed tc be larger than the frequency excursion f,,
so that the i-f amplification of the signal will not give rise to any appreci-
able deformation of the signal.

The main problem is to find the minimum detectable fractional
modulation e, when the signal is disturbed by the presence of noise. To
determine eain the power criterion will be used just as in Sec. 10-4. In the
power spectrum of signal plus noise there will appear a signal peak at the

1 M. G. Crosby, “Frequency Modulation Noise Characteristics,” Proc. I.R.E., 25,
472 (1937).
367
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frequency p and with power ~ ¢* superposed on a continuous background
of noise. The signal peak will be just detectable if its power is of the
same order of magnitude as the power of a segment of the continuous
noise spectrum around the frequency p. The application of this power
criterion will lead to €. expressed as a function of system parameters and
of the ratio z of the unmodulated signal power to the noise power (cf. Sec.
7-3). The establishment of this function constitutes the main result of
the theory.

13-2. The Minimum Detectable Amplitude Modulation.—For ampli-
tude modulation all the necessary formulas have been derived already in
Sec. 7-2.  Only the case of the linear detector will be considered. The
starting point is then Eq. (7-18), in which one has to substitute

ar = So(l + € cos 2rpt), B1 =0,
az = So(l + e cos 2xp(t + 7)), 2 = 0.

The tirst term of Eq. (7-18) is developed in powers of . Keeping only
terms up to €%, one obtains after averaging over the time ¢

TOVTE) = W (P + b (7 + 2") + 2629 cos 2upr + + - - |,

where z = SI/2W, F = F(—%, 1; —z), and the primes denote differ-
entiations with respect to z.

In the further terms of Eq. (7-18), which are proportional to p(r) and
p'(r), the modulation of the signal can be neglected. Using the recurrence
relations for the hypergeometric function F (¢f. See. 7-6), one obtains
finally for the correlation function of signal plus noise

R(r) = 1%11(1"2 (— %; 1; —-z) + 6—2—2221"2 (%, 2; —z) cos 2rpr
1 1
+ EZF? (%y 2; —z) p(r) + Zp2(—r) {F? <§; 1; —z) + [F (%, 1; —z)
1 2
— F(Qy 2; —z)] }) (3)

in which the contribution ~ €? in the d-c term has still been neglected.

With the help of the general formula [Eq. (7-26)] the audio spectrum
of signal and noise can be deduced immediately from Eq. (3). The result
is clear; the first two terms give the d-c¢ peak and the signal peak at the
frequency p; the third and fourth term give the continuous noise back-
ground. It is easy to show that for W — 0 or z — = (3) goes over into

R(r) —> 8 (1 + g cos 21rpt),

z— ©
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which is the correlation function for the signal (1), whereas for z — 0
R(T):{)’% [1 +a pz(f)],
which is, up to terms ~ p% the correlation function of noise alone.

It should be emphasized that Eq. (3) is only an approximation, since
terms of higher order than p%(7) and ¢ have been neglected. The term
~ e' would give rise, for instance, to a discrete line at the frequency 2p, so
that although the detector is linear in the presence of noise, the harmonics
of the signal will appear. It can be shown that the intensities of these
harmonies go to zero both for z — « and for z— 0. For our purposes
they can be neglected.

The power criterion can now be applied. To be specific, we shall
consider the case that the shape of the i-f pass band is rectangular of
width B and that the audio spectrum is passed through a square low-pass
audio filter of width & < 8. The signal peak at frequency p has then to
compete with the integral of the continuous noise spectrum from zero to
b. Putting the ratio of the powers equal to a constant k, we obtain for
the minimum detectable modulation e the result

k b
(€hin)am = 7 {[F? + (Fy = Fo)* + 28]

- B
—§{F1+(F1—F2)1§2]) (4a)

where F1 = F(&, 1; —2), Fo = F(}, 2; —z). The constant k& has to be
determined by experiment. In Fig. 13-1 (é3;.)em/k has been plotted as a
function of z for the two cases b/B = % and b/B = 4. As is to be
expected, (eX;,)em 15 a monotonic decreasing function of 2z, and it can be
easily shown that for small z

kb b
(erznin)a‘m;;; 2B (1 - ﬁ) (4b)
whereas for large z
2k b
(éﬂn)am I 7 E (46)
z— ®

13-3. The Noise Spectrum for an F-m Receiver.—The calculation of
the minimum detectable frequency modulation is more involved because
the f-m receiver contains besides the detector a second nonlinear element,
the amplitude limiter. We shall consider therefore first the spectrum of
noise alone.

The output of the i-f amplifier can be represented by

N({t) = z(t) cos 2xf,t + y(t) sin 2xfit
= vzt F y?cos (21rfct — tan™! g), 5)
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F1g. 13:1.—Minimum detectable modulation as a function of z for a-m and f-m systems and
for different values of the deviation ratio n = B/2b.
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where, when only noise is present, z(t) and y(t) are independent Gaussian
random functions, with a spectrum determined by the shape of the i-f
pass band (cf. Sec. 3:8 or 7-2).  The output N (f) enters now the amplitude
limiter. Assuming strong amplitude limitation the result will be

N = cos (2t ~ a2,

which is a wave of constant amplitude but with the variable angular
frequency

o) = 2 (21rfct — tan™ y) = 2nf. + -”2 2y, (6)
+y
The slope filter transforms this variation in frequency into a variation in
amplitude, so that its output will be a high-frequency wave with an
- envelope given by (6). With a linear second detector the final audio
output will therefore be given by wx(f).
To find the audio spectrum one has first to calculate again the correla-
tion function

Rx(r) = on(Dan( £ 1) = 4xf2 + 2xf, (y;ig%%y—‘

(l/ﬂz — Zalj2 Y1t — T1y1 YaLe — T2
e Ty )+(x§+y% R ) @

where the indices 1 and 2 refer to the two time points ¢ and ¢ + r and
where the ensemble averages have to be performed with the joint prob-
ability distribution of the eight variables zi, yi, %1, 91, 22, Y2, T2, V2
Clearly, this probability distribution will be an eight~dimensional
Gaussian distribution, which can be found with the method explained in
Sec. 3-7. For the calculation of the averages in Eq. (7), it is best to keep
the Gaussian distribution expressed as the Fourier transform of its
characteristic function (¢f. Sec. 3-5). Denoting the eight variables by
2y, 22, . . . , 25 one can then write

1 te
Wz, 29+ * ,28) =W8/- . -/dtl + -+ dtgexp

( ;z buddsls + 4 2 2t ,), )

k!

where by = z:z; can easily be calculated from the defining equations for
z(t) and y(t) (cf. Secs. 3-7 and 3-8). With the same notation as used in
Sec. 7-2, the results are
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+
bu = bzg = b55 = bas 02 /_ deQ(f) = W,

I

+ =
bss = bag = b3 = bas 4r’q? /_‘ df fPAXf) = V,

+ =
bis = by = o / df AX(f) cos 2xft = U(r), ©)
d .
b17 =bas = —byy = —bus = d—U = U,
T
d:U "
b37 =b48 = '_W = —U

Clearly, the average values in the second and the third term of Eq. (7)
are zero, since the functions, which have to be averaged, are odd. To
calculate the fourth term of Eq. (7), the following 16-fold integral has to
be evaluated:

+
1 P P o s e %124 — %93 2528 - 2627
_—(27I')8/ /dZ]_ ng dt[ dlg Z% —|—Z§ Zg +Z§
exp (-

z bkltkt[ + Z Z Zj't,')' (10)
kl j
The integral over the variables z; . . . 25, which will be performed first,
can be written as the product of two fourfold integrals of similar form.
The first one is

+ 4
212 ,
//// 7 ;422 exp (z E z_,t,-) dzy dzg dzs dzg
A =1

N =

+
. , 4 .
= —47r215(13)5 ([‘,4) // z% _; e gi{zititzaty) dzl de (]_1)

2

using the integral representation
Lfre
8(t) = »—/ dz ei*
21 |_ »

of the Dirac 8-function. The integrals over z; and 2; can be performed by
introducing polar coordinates 2, = r cos 6, z; = 7 sin 8 and by using Eq.
(7-61) for the integral over 6, and

ol

Aw dr Ji(kr) =




S

L
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for the integral over r. The result is

4 4
2124 . _ ; ’ % B
_/‘/‘//Z% + 2% exp (l z Z,tj) d21 PN d24 = (21!’)1503)6 (14) t—%—+ i;
— ji=1

(12)
The integral over zs . . . zg is completely similar. Introducing these
results in Eq. (10), one sees that the integrals over ¢, {4, {7, and ¢y can be
carried out immediately so that one is left with the fourfold integral

+ =
1 Ultats + tats) + U(tots — tuls)?
o | [ [ v HO G

By putting

thh=rcos(n+¢), t=rsin(n+ ),

ts = 1l cos o, ls = lsin ¢,
the integrand becomes independent of ¢, so that the integration gives 2xr.
The 4 integration can be carried out by means of Eq. (7-61), and the r
integration by means of Eq. (7-62). The hypergeometric functions
F(a, b; z) that appear at this stage of the calculation have positive
integer values for a and b, so that they can be expressed in exponential
functions and polynomials in z. The last integration over [ is

elementary.
The final result is
Ra(r) = da¥f2 + ;(E - ”—Z) log (1 — o?), (14)
PP
where p(r) = U(r)/W is again the normalized correlation function of the
noise at the output of the i-f am- 10
plifier. Since p(r) —1 when 09
7 — 0, it follows from Eq. (14) that 08
Ry(r) becomes logarithmically in-
finite when + approaches zero. % o7
The reason for this strange be- %06
havior is the fact that in the cal- © 05
culation, the width of the slope 04 <
filter has not been limited. At 03
the output of the amplitude lim- 02

iter, the instantaneous frequency 0 010203 04 }’/'Z 06 07 08 09 10

will vary mainly in the i-f range, ¥ 13.2—Noise spectrum for an f-m
but occasionally [when z(t) and receiver.
() become small at the same time], the frequency can become very high.
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With a slope filter of unlimited width one will therefore get very high peaks,
which are responsible for the logarithmic infinity of the correlation fune-
tion Ry(r). In practice, the slope filter will have a finite width so that the
peaks will be cut off, which will make the correlation function finite for
7 = 0. For small values of 7, Eq. (14) cannot therefore be trusted. How-
ever, since this will affect only the h-f part of the spectrum, it is not neces-
sary to consider it for further calculations.

Assuming again the shape of the i-f pass band to be rectangular of
width B, so that

sin w#Br
p(T) - ‘n"BT 4

one obtains from Eq. (14) the spectrum

o

2fx sin? x — z? sin? x

G(f) = 27|'B‘/; dx COS—E— m 10g (1 - e )' (15)

This integral has to be done numerically. The results are shown in
Table 13-1, and the shape of the spectrum is shown in Fig. 13-2.
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13-4. The Spectrum of Signal Plus Noise for an F-m Receiver.—For
the case when a signal is present with noise, the calculation of the spec-
trum proceeds along the same lines as for the case of noise alone. The
audio output will be given by

wsin(l) = 2nfo + X)fijr—iff (16)
where
X(@) = olt) + 2(0),
Y(O) = 80) + 30), (17
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and

a(t) = Spcos (e—fc sin 21rpt>,
P (18)

B(t) = —8psin (% sin 21rp!).

Here the assumption of a wide i-f pass band has been made, so that the
signal is not deformed by the i-f amplifier and is still represented by Eq.
(2) or by

Sp(t) = alt) cos 2rft 4+ B(t) sin 2xfd,

where a(t) and §(¢) are given by Eq. (18).

For the correlation function Rs,v(r), one obtains an expression analo-
gous to Eq. (7) except that z(t) and y(¢t) must be replaced by X(¢) and
Y(!); and in addition to the ensemble average, a time average over the
initial time ¢ has to be performed.

The ensemble averages of the second and third terms in the expression
for Rsin(r) will not be zero as they were in the case of noise alone. Since
the joint probability distribution of X (t), Y(t), X(¢) and Y (¢) is given by

X =)+ (Y —B)
2w

s 1
W(X,Y,X,Y) = W/exp [

X @+ (Y- B)Z]
2V ’

where V and W have the same meaning as in Eq. (9), it is easily found
that
YX—XI.’:ﬂd—aB(l_e—a;Lf)
X2 + Y2 a? + 62 (19)
_S
= 2ref, cos 2apt(1l — e 2W).

It is clear that the time average of this expression is zero, and therefore,
the second and third terms will not contribute to the final result for
Rsin(7).

There remains the calculation of the term

Y. X — X\Y, Y.X, — X.Y,
Xt 4+ Y3 Xi 4+ V2

which is analogous to the fourth term in Eq. (7). The ensemble average
can be carried out in the same way as in the previous section. The
probability distribution of X, Yy, X1, ¥y, Xa, Y3, Xs, ¥, can again be
found by the method explained in Sec. 3:7, and the result is similar to
Eq. (8) except that in the integral the z; have to be replaced by Z, — ¢;,

f (20)
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where the Z;’s denote the eight variables X1, V1, X3, Y1, X3, Vs, X, Vo,
and the a1, o2, . . . , as’s stand for ay, By, 61, B1, @y, Be, éa, Be, respectively.
The integrals over Z,, Z,, . . . , Zs and over 4, {4, {5, and ts can be per-
formed in exactly the same way as in the case of noise alone. The remain-
ing fourfold integral (over t, {5, t;, and t) is more complicated than Eq.
(13). It is found to be

+ =
fl,‘/‘//.‘/’ dty dtz dt; dis
4

exp [ _%V @ +6+6+G) — Ultats + tate) — i(arts + Bita + asts + lea)]
_ . &+ )+ &)
{(aBatats + Brdstits — dadatats — BiBatits) + [U(tits + tols)
+ U"’(tzta — tibs)?] + tU[ar(ttats — Gts) + Bultrtats
— ) + aa(tall — lalsls) + Baltal — Hitste)]).  (21)

Since an exact evaluation of this integral does not seem feasible, a few
aporoximations will be made at this stage. It is clear that the first term
between the braces is proportional to € and will give rise to the signal
peak in the spectrum of signal plus noise. Therefore, in this term we
neglect the U(+) and obtain

+ o ) ) -
1 arBtals + Braatils — aidialats — B1Batils
w | [ [ ] wawia @+ HE + 1)
r

exp [ - %f @B+E+88+8) — (o + Bz + aot; + BZtﬁ)]- (22)

This integral can be written as a linear combination of products of double
integrals. Fach double integral is of the same form as the one occurring
in Iiq. (11) and can therefore be evaluated easily. Thus, it is found that
the fourfold integral (22) is equal to

So2
4r2ef2(1 — e 2W)2 cos 2apt cos 2rp(t + 7). (23)

The remaining terms between the braces in Eq. (21) will give rise to the
continuous noise spectrum. In these terms, therefore, we shall neglect
the modulation of the signal and put

a1 = as = S, 61=52=d1=d2=ﬁ‘1=82=0-
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These terms then reduce to the integral

+ =
1 . Utsts + tots) + U(tats — fats)?
B / / / / [dbx d s dta CESCET

exp l:— %j @+E+8+8) — Ults + tats) — iSo(ts + ts)]- (24)

Substituting in (24),

t1 = R sin 8 cos (7 + o), t; = Rsin 6sin (n + ¢),
ts = R cos 8 cos ¢, ts = R cos 8 sin ¢,

one sees that the integrations over ¢ and R can be carried out by means
of Eqgs. (7-61) and (7-62). The remaining two variables 6 and » are then
transformed into

z = sin 260 cos 1, y = sin 26 sin 9.
The integration over y is elementary, but the final integration over z can
be reduced only to the integral logarithm Ei(u), defined as

. Y oer
Ei(u) = f_ N dz,
where for positive u, the principle value of the integral has to be taken.

The final result for the integral (24) can be written as
Ri(r) + Ra(r) + Ri(r),

where

Ri(r) = % [1 —e* (’;” + Z 1) Ei (i)] (25a)
p? Z Be , 2 fl—0p
m) = 5| - 22 Grs-1)m(5os)] e
p2 +p = o L fl —pz
(T) l:l — e T14e — e (;2— -+ ;, — 1) E: (m;)] (250)

and z = S%/2W.

The average over the time ¢ affects only Eq. (23). With all these
approximations, the correlation function for signal plus noise becomes
Roin(r) = 4772 + 2r2%22(1 — e72)2 cos 2mpr + Rui(7) + Ra(r) + Rs(s)

(26)

with R., Rs, Ra given by (25). Equation (26) is the analogue of Eq. (3)
for the case of frequency modulation. Since for small u

Ei(u) = lozu+C+u+ +---,

22'
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it is easy to show that for z — 0, Rsy~(7) goes over into Rx(r) as given by
Eq. (14). For large u

i) = £ <1+u+ + )
from which it follows that for large z
15 . 1
R =5+ G +imgat . 27)

whereas Ry(r) and Rj(r) go to zero for z— « as exp (—2) and exp
(—=2:/(1 + p)), respectively, so that they will be negligible compared
with R;(7) The first two terms in (26) become, of course, for z — = the
coirelation function for the signal alone.

The spectrum Gs,x(f) follows from (26) by a numerical integration.
Again we have assumed a rectangular i-f pass band of width B and have
calculated the spectrum for z = 1.5 and for z = 10. The results are
preser:ted in Tables 13-2 and 13-3 and are shown in Figs. 13-3 and 13+4.

TaBLE 13-2.—PARTIAL SPECTRA AND ToTAL CONTINUOUS SPECTRUM OF SIGNAL PLUS
Noise ForR z = 1.5

f Gi(f) G:(f) Gs(f) Gsx(f)
B 4rB 4rB 4rB 4=B
0 —0.001 —0.001 0.136 0.134
0.2 0.108 —0.051 0.125 0.182
0.3 0.236 —0.106 0.113 0.243
0.4 0.405 —0.149 0.092 0.348
0.6 0.081 0.021 0.014 0.116
0.8 0.037 0.130 —0.071 0.096
0.85 0.015 0.166 —0.089 0.092
1.0 -0.083 0.291 —0.132 0.076

TaBLE 13-3.—PARTIAL SPECTRA OF SIGNAL PLUS NOISE FOR z = 10

f G:(f) Gz(f) Ga(f)

B 3 X 108 X 10
0 0 —0.0013 0.0151
0.1 0.0033

0.2 0.0132 —0.0034 0.0146
0.3 0.0294

0.4 0.0520 —0.0078 0.0138
0.5 0.0809 0.0023

0.6 0.0027 —0.0112 0.0109
0.7 0.0028

0.8 0.0025 ~0.0108 0.0078
0.9 0.0017

1.0 0.0004 ~0.0070 0.0043
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The quantities G1(f), Gz(f), Gs(f) are the spectra corresponding to Ry(7),
R.(7), and Ry(r), respectively. For large z, only G1(f) is of importance;
for z = 10, it has a discontinuity at f/B = 0.5. For small z, all three
spectra contribute in a rather erratic fashion. The total continuous
spectrum (represented by Curve 4 in Fig. 13-3) clearly has a shape inter-
mediate between the shape of the pure noise spectrum (Fig. 13-2) and the
shape of the spectrum for z = 10 (represented by Curve 1 in Fig. 13+4,
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Fia. 13-3.—Spectrum of signal plus noise in f-m systems; z = 1.5. Curves 1, 2, and
3 are the partial spectra Gi(f) /4xB, G:(f)/4xB, and G:(/) /4xB. Curve 4 is the total
spectrum G(/) /4= B.
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since the contributions of G»(f) and G;(f) are negligible). In addition to
these continuous spectra, there are, of course, the d-¢ peak and the signal
peak at frequency p, which follow from the first two terms in Eq. (26).
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F1G. 13-4.—Spectrum of signal plus noise in f-m systems, z = 10. Curves 1, 2, and 3

are the partial spectra G1(f)/4wB, G:(f) X 10*/4xB, G3(f) X 10°/4xB. Total spectrum
coincides with Curve 1.
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13.6. The Minimum Detectable Frequency Modulation.—We are
now in the position to apply the power criterion. The power in the
signal peak is clearly given by

Ps = 2r%2(1 — e9)2. (28)

Assuming, as in Sec. 13-2, a rectangular audio filter of width b £ B/2, the
noise power Py, with which the signal has to compete, is obtained by
integrating the continuous noise spectrum between zero and b. For the
numerical caleulation, it is more convenient to perform this integration
before carrying out the Fourier transformation of the correlation function
(26). The noise power can then be written as the single integral
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. X
o sin — . g 2; _
— N nlp? (l4p —1 2
Py =28 ./; = [2P’<1—pe e 1—p+1)
0_—_;..,_., .y fl—p N\ .2\ _ L. fl—pcz
+2pa (po pp+pZ)[2E1( P z) Ez(p) E’L(—I—_'_—p;):”,
(29)

where p(z) = sin z/z and the dots denote differentiations with respect to
z. The symbol n = B/2b; in the paper by Crosby, this is referred to as
the deviation ratio.

In order to make a fair comparison between the a-m and the f-m
systems, it is better to replace ¢ in Eq. (28) by

2¢f.
m = 2 (30)
Putting the ratio of Ps to Py equal to a constant k, it is then found that
2kP
(Rum)ym = W(_I—N—e"‘)”’ (31a)

TaBLe 13-4.—MiNiMUM DETECTABLE MoDULATION ¥OR A-M AND F-Mm Systems ror
DirFerENT VALUES OF z = S}/2W aAnD oF n = B/2b

e:ﬂu
*
z
Am,n =1 Fm,n=1 A-m,n =4 F-m,n=4
—0 3/8z22 1/1.222 15/128.2 1/3.6222
0.1 37.5 83.4 11.7 27.6
0.2 13.5 20.8 3.89 6.9
0.3 6.96 9.71 1.97 2.83
1.5 0.769 0.433 0.199 0.072
3.0 0.352 0.124 - 0.090 0.011
8.0 0.125 |  ....... 0.031
10 0.10 0.033 0.025 0.00052
— 1/z 1/3z 1/4z 1/1922

which must be compared with Eq. (4). The noise power Py has been
calculated numerically for n = 1 and n = 4 and for different values of z.
The corresponding results for (e?;,);m are presented in Table 13-4, where
the values of (e2,,)am computed from Eq. (4) are also recorded, and both
are shown in Fig. 13-1. It is clear that for large z, the f-m system is
better than the a-m system. The factor is 3n% which can be seen as
follows: For large 2z, Ra(7) and R3(r) can be neglected in Eq. (26), whereas
the first term in the asymptotic series (27) can be used for Ri(r). This
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gives for Py
.z
sin > B
r  6n%
since p(z) = sin z/z. Substitution in Eq. (31) leads to
k

_,
zZ— ® 3ndz

Py~ — — dz p(x)
4]

(€in) fm (310)
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Fia. 13-5.—Comparison of a-m systems with f-m systems for different values of the
deviation ration = B/2b; Az and Ar are the experimental and theoretical curves forn = 1;
Bg and Br are the same for n = 4.
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which has to be compared with Eq. (4¢). This shows that for large z,
the f-m system is better by the factor 3n? or by 4.76 db for n = 1 and by
16.8 db for n = 4. This is in agreement with the theoretical results of
Crosby.

For small z, the correlation function Ex(r) for noise alone can be used
in the calculation of Py. Since Py will now be only a function of =,
it follows from Eq. (31a) that (e..) will become inversely proportional
to z2. The proportionality factor, however, has to be calculated numer-
ically for the different values of n. Thus, it is found that forz — 0

k

—— forn =1
5 )
(udym —= 2 @310)
20 |k forn = 4
3.622% ’

which has to be compared with Eq. (4b). For small z, therefore, the a-m
system is better than the f-m system by the factor 2.22 (or 3.46 db) for
n = 1 and by the factor 2.36 (or 3.73 db) for n = 4.

TaABLE 13-5.—SI1GNAL-TO-NOISE RATIO FOR F-M AND A-M SysTEMS FOR DIFFERENT
VALUES OF z

Deviation ration =1 Deviation ration = 4
z Abscissa Ordinate Abscissa, Ordinate
a-m system f-m system a-m system f-m system
—w | L. 4.76db | ..., 16.8 db
above a-m above a-m
D L 15.92 32.6
3 4.54 9.08 10.45 19.6
1.5 1.14 3.64 7.02 11.4
0.3 —8.43 -9.87 - 2.9 — 4.51
-0 | ... 3.46db |  ...... 3.72db
below a-m below a-m

The results are presented in another way in Fig. 13-5 (based on Table
13-5), where the ratio of the signal power Py to the noise power Py for
frequency modulation is plotted against the same ratio for amplitude
modulation. Both abscissa and ordinate are expressed in decibels.
The unmodulated signal-to-noise ratio z is (in Fig. 13-5) simply a param-
eter. It is clear that the a-m system gives a 45° line. The two dotted
curves, marked A and Br, are the theoretical curves for the f-m system
forn = 1 and n = 4. The two solid curves, marked Az and By, repre-
sent the experimental results found by Crosby.!

! “Frequency Modulation Noise Characteristics,” Proc. IRE, 28, 803 (1937),
Fig. 10.
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